Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x-2\sqrt{xy}+3y-2\sqrt{x}+1\)
\(=\frac{1}{3}x-2\sqrt{\frac{1}{3}x}.\sqrt{3y}+3y+\frac{2}{3}x-2\sqrt{\frac{2}{3}x}.\sqrt{\frac{3}{2}}+\frac{3}{2}-\frac{3}{2}+1\)
\(=\left(\sqrt{\frac{1}{3}x}-\sqrt{3y}\right)^2+\left(\sqrt{\frac{2}{3}x}-\sqrt{\frac{3}{2}}\right)^2+1-\frac{3}{2}\ge\frac{-1}{2}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\sqrt{\frac{1}{3}x}-\sqrt{3y}=0\\\sqrt{\frac{2}{3}x}-\sqrt{\frac{3}{2}}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{3}x=3y\\\frac{2}{3}x=\frac{3}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{1}{4}\\x=\frac{9}{4}\end{cases}}}\)
Vậy Amin = -1/2 khi x = 9/4 và y = 1/4
P/s: Phân tích hơi lẻ nhưng chịu thôi. Bạn xem đi có gì không hiểu hỏi mình.
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
Ukm
It's very hard
l can't do it
Sorry!
Từ giả thiết \(xy+yz+zx=5\)
ta có \(x^2+5=x^2+xy+yz+zx=\left(x+y\right)\left(z+x\right)\)
Áp dụng BĐT AM-GM , ta có
\(\sqrt{6\left(x^2+5\right)}=\sqrt{6\left(x+y\right)\left(z+x\right)}\le\frac{3\left(x+y\right)+2\left(z+x\right)}{2}=\frac{5x+3y+2z}{2}\)
CM tương tự ta được \(\sqrt{6\left(y^2+5\right)}\le\frac{3x+5y+2z}{2};\sqrt{z^2+5}\le\frac{x+y+2z}{2}\)
Cộng zế zới zế BĐt trên ta đc
\(\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{z^2+5}\le\frac{9x+9y+6z}{2}\)
\(=>P=\frac{3x+3y+2z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{x^2+5}}\ge\frac{2\left(3x+3y+2z\right)}{9x+9y+6z}=\frac{2}{3}\)
=> \(GTNN\left(P\right)=\frac{2}{3}khi\left(x=y=1;z=2\right)\)
Ta có \(\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{z^2+5}=\sqrt{6\left(x+y\right)\left(x+z\right)}+\sqrt{6\left(y+z\right)\left(y+x\right)}\)\(+\sqrt{6\left(z+x\right)\left(z+y\right)}\)
\(\le\frac{3\left(x+y\right)+2\left(x+z\right)}{2}+\frac{3\left(x+y\right)+2\left(y+z\right)}{2}+\frac{\left(z+x\right)+\left(z+y\right)}{2}\le\frac{9x+9y+6z}{2}=\frac{3}{2}\)\(\left(3x+3y+2z\right)\)
\(\Rightarrow P=\frac{3x+3y+2z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{z^2+5}}\ge\frac{2}{3}\)
dấu "=" xảy ra \(\Leftrightarrow x=y=1;z=2\)
Vậy \(P_{min}=\frac{2}{3}\Leftrightarrow x=y=1;z=2\)
\(P=x-2\sqrt{xy}+3y-2\sqrt{x}+1\)
\(\Leftrightarrow3P=3x-6\sqrt{xy}+9y-6\sqrt{x}+3\)
\(=\left(x-6\sqrt{xy}+9y\right)+\left(2x-\dfrac{2.\sqrt{2}.3.\sqrt{x}}{\sqrt{2}}+\dfrac{9}{2}\right)-\dfrac{3}{2}\)
\(=\left(\sqrt{x}-3\sqrt{y}\right)^2+\left(\sqrt{2x}-\dfrac{3}{\sqrt{2}}\right)^2-\dfrac{3}{2}\ge-\dfrac{3}{2}\)
\(\Rightarrow P\ge-\dfrac{1}{2}\)
Vậy GTNN là \(P=-\dfrac{1}{2}\) đạt được khi \(\left\{{}\begin{matrix}x=\dfrac{9}{4}\\y=\dfrac{1}{4}\end{matrix}\right.\)