Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{x^2.1000.1000}{x^2}}\)
\(\Rightarrow N\ge300\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=1000\Leftrightarrow x=10\)
2.\(P=\left(5x+\frac{12}{x}\right)+\left(3y+\frac{16}{y}\right)\ge2\sqrt{60}+2\sqrt{48}=4\sqrt{15}+8\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow5x=\frac{12}{x};3y=\frac{16}{y}\Leftrightarrow x=\sqrt{\frac{12}{5}};y=\frac{4\sqrt{3}}{3}\)
\(\)
\(N=\frac{x^2+2000}{x}=x+\frac{2000}{x}\ge2\sqrt{x.\frac{2000}{x}}=2\sqrt{2000}=40\sqrt{5}\)
Dấu "=" tại \(x=20\sqrt{5}\)
Theo BĐT \(AM-GM\) ta có :
\(xy+yz+zx\le\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{12^2}{3}=48\)
\(x^2+y^2+z^2\ge8\left(x+y+z\right)-\left(16+16+16\right)=48\)
Theo BĐT Cauchy schwarz dưới dạng en-gel ta có :
\(\dfrac{x^3}{y+1}+\dfrac{y^3}{z+1}+\dfrac{z^3}{x+1}=\dfrac{x^4}{xy+z}+\dfrac{y^4}{yz+y}+\dfrac{z^4}{zx+z}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+yz+zx+x+y+z}=\dfrac{48^2}{48+12}=\dfrac{192}{5}\)
Vậy \(MIN_Q=\dfrac{192}{5}\) . Dấu \("="\Leftrightarrow z=y=z=4\)
Sửa đề: \(Minf\left(x,y,z\right)=\frac{\left(x+y+z\right)^6}{xy^2z^3}\)
\(\frac{\left(x+y+z\right)^6}{xy^2z^3}=\frac{\left(x+\frac{y}{2}+\frac{y}{2}+\frac{z}{3}+\frac{z}{3}+\frac{z}{3}\right)^6}{xy^2z^3}\)
\(\ge\frac{\left(6\sqrt[6]{x.\frac{y^2}{4}.\frac{z^3}{27}}\right)^6}{xy^2z^3}=\frac{6^6}{4.27}=432\)
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
Lời giải:
Áp dụng BĐT Cô-si cho các số dương ta có:
\(x^3+2000=x^3+1000+1000\geq 3\sqrt[3]{x^3.1000.1000}=300x\)
\(\Rightarrow N=\frac{x^3+2000}{x}\geq \frac{300x}{x}=300\)
Vậy \(N_{\min}=300\)
Dấu "=" xảy ra khi \(x^3=1000\Leftrightarrow x=10\)