\(y=sin^{10}x+cos^{10}x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 7 2019

Lời giải:

Đặt \((\sin ^2x,\cos ^2x)=(a,b)\). Bài toán trở thành:

Tìm min, max (nếu có) của hàm số $y=a^5+b^5$ biết $a+b=1$ và $a,b\in [0;1]$

---------------------------------

Áp dụng BĐT Cô-si:

\(a^5+\frac{1}{2^5}+\frac{1}{2^5}+\frac{1}{2^5}+\frac{1}{2^5}\geq 5\sqrt[5]{a^5.\frac{1}{2^{20}}}=\frac{5a}{16}\)

\(b^5+\frac{1}{2^5}+\frac{1}{2^5}+\frac{1}{2^5}+\frac{1}{2^5}\geq \frac{5b}{16}\)

Cộng theo vế:

\(\Rightarrow a^5+b^5+\frac{8}{2^5}\geq \frac{5(a+b)}{16}=\frac{5}{16}\)

\(\Rightarrow a^5+b^5\geq \frac{1}{16}\)

Vậy $y_{\min}=\frac{1}{16}$ khi $a=b=\frac{1}{2}$ hay $\sin x=\cos x=\frac{1}{\sqrt{2}}$

Lại có:

Vì $a,b\in [0;1]$ nên $a^5\leq a; b^5\leq b$

\(\Rightarrow y=a^5+b^5\leq a+b=1\)

Vậy $y_{\max}=1$ khi $(a,b)=(0,1)$ và hoán vị hay $(\sin x, \cos x)=(0,\pm 1)$ và hoán vị.

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

6 tháng 5 2016

Ta có : \(y'=\cos x.e^{\sin x}\Rightarrow y"=-\sin x.e^{\sin x}+\cos^2x.e^{\sin x}\)

       \(\Rightarrow y"=-\sin x.y+\cos x.y'\Rightarrow y'\cos x-y.\sin x-y"=0\)

=> Điều phải chứng minh

AH
Akai Haruma
Giáo viên
20 tháng 7 2017

Bài 1:

Đặt \(\left\{\begin{matrix} x+y=a\\ xy=b\end{matrix}\right.\Rightarrow x^2+y^2+xy=a^2-b=3\)

\(x,y\geq 0\rightarrow b\geq 0\rightarrow a^2=3+b\geq 3\)

Biến đổi:

\(T=(x+y)^3-3xy(x+y)-[(x+y)^2-2xy]\)

\(\Leftrightarrow T=a^3-3ab-a^2+2b\)

\(\Leftrightarrow T=a^3-3a(a^2-3)-a^2+2(a^2-3)=-2a^3+a^2+9a-6\)

Xét đạo hàm và lập bảng biến thiên hàm trên với điều kiện \(a\geq \sqrt{3}\) ta thu được \(T_{\max}=3\sqrt{3}-3\Leftrightarrow a=\sqrt{3}\Leftrightarrow (x,y)=(\sqrt{3},0)\)

Hàm không có min.

23 tháng 1 2016

a) \(f\left(x\right)=\sin^3x.\sin3x=\sin3x\left(\frac{3\sin x-\sin3x}{4}\right)=\frac{3}{4}\sin3x.\sin x-\frac{1}{4}\sin^23x\)

          = \(\frac{3}{8}\left(\cos2x-\cos4x\right)-\frac{1}{8}\left(1-\cos6x\right)=\frac{3}{8}\cos2x+\frac{1}{8}\cos6x-\frac{3}{8}\cos4x-\frac{1}{8}\)

Do đó : 

\(I=\int f\left(x\right)dx=\int\left(\frac{3}{8}\cos2x+\frac{1}{8}\cos6x-\frac{3}{8}\cos4x-\frac{1}{8}\right)dx=\frac{3}{16}\sin2x+\frac{1}{48}\sin6x-\frac{3}{32}\sin4x-\frac{1}{8}x+C\)

23 tháng 1 2016

b) Ta biến đổi :

\(f\left(x\right)=\sin^3x.\cos3x+\cos^3x.\sin3x=\cos3x\left(\frac{3\sin x-\sin3x}{4}\right)+\sin3x\left(\frac{\cos3x+3\cos x}{4}\right)\)

\(=\frac{3}{4}\left(\cos3x\sin x+\sin3x\cos x\right)=\frac{3}{4}\sin4x\)

Do đó : \(I=\int f\left(x\right)dx=\frac{3}{4}\int\sin4xdx=-\frac{3}{16}\cos4x+C\)

25 tháng 8 2016

Xét tính chẵn lẻ:

a) TXĐ: D = R \ {π/2 + kπ| k nguyên}

Với mọi x thuộc D ta có (-x) thuộc D và

\(f\left(-x\right)=\frac{3\tan^3\left(-x\right)-5\sin\left(-x\right)}{2+\cos\left(-x\right)}=-\frac{3\tan^3x-5\sin x}{2+\cos x}=-f\left(x\right)\)

Vậy hàm đã cho là hàm lẻ

b) TXĐ: D = R \ \(\left\{\pm\sqrt{2};\pm1\right\}\)

Với mọi x thuộc D ta có (-x) thuộc D và

\(f\left(-x\right)=\frac{\sin\left(-x\right)}{\left(-x\right)^4-3\left(-x\right)^2+2}=-\frac{\sin x}{x^4-3x^2+2}=-f\left(x\right)\)

Vậy hàm đã cho là hàm lẻ

 

25 tháng 8 2016

Tìm GTLN, GTNN:

TXĐ: D = R

a)  Ta có (\(\left(\sin x+\cos x\right)^2=1+\sin2x\)

Với mọi x thuộc D ta có\(-1\le\sin2x\le1\Leftrightarrow0\le1+\sin2x\le2\Leftrightarrow0\le\left(\sin x+\cos x\right)^2\le2\)

\(\Leftrightarrow0\le\left|\sin x+\cos x\right|\le\sqrt{2}\Leftrightarrow-\sqrt{2}\le\sin x+\cos x\le\sqrt{2}\)

Vậy  \(Min_{f\left(x\right)}=-\sqrt{2}\) khi \(\sin2x=-1\Leftrightarrow2x=-\frac{\pi}{2}+k2\pi\Leftrightarrow x=-\frac{\pi}{4}+k\pi\)

\(Max_{f\left(x\right)}=\sqrt{2}\) khi\(\sin2x=1\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

b) Với mọi x thuộc D ta có: 

\(-1\le\cos x\le1\Leftrightarrow-2\le2\cos x\le2\Leftrightarrow1\le2\cos x+3\le5\)

\(\Leftrightarrow1\le\sqrt{2\cos x+3}\le\sqrt{5}\Leftrightarrow5\le\sqrt{2\cos x+3}+4\le\sqrt{5}+4\)

Vậy\(Min_{f\left(x\right)}=5\)  khi \(\cos x=-1\Leftrightarrow x=\pi+k2\pi\)

\(Max_{f\left(x\right)}=\sqrt{5}+4\)  khi \(\cos x=1\Leftrightarrow x=k2\pi\)

c) \(y=\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x\cos^2x\)\(=1-\frac{1}{2}\left(2\sin x\cos x\right)^2=1-\frac{1}{2}\sin^22x\)

Với mọi x thuộc D ta có: \(0\le\sin^22x\le1\Leftrightarrow-\frac{1}{2}\le-\frac{1}{2}\sin^22x\le0\Leftrightarrow\frac{1}{2}\le1-\frac{1}{2}\sin^22x\le1\)

Đến đây bạn tự xét dấu '=' xảy ra khi nào nha :p

20 tháng 1 2016

Biến đổi : 

\(5\sin x=a\left(2\sin x-\cos x+1\right)+b\left(2\cos x+\sin x\right)+c\)

         = \(\left(2a+b\right)\sin x+\left(2b-a\right)\cos x+a+c\)

Đồng nhất hệ số hai tử số : 

\(\begin{cases}2a+b=5\\2b-a=0\\a+c=0\end{cases}\)

\(\Rightarrow\) \(\begin{cases}a=2\\b=1\\c=-2\end{cases}\)

Khi đó :

\(f\left(x\right)=\frac{2\left(2\sin x-\cos x+1\right)+\left(2\cos x+\sin x\right)-2}{2\sin x-\cos x+1}\)

\(2+\frac{2\cos x+\sin x}{2\sin x-\cos x+1}-\frac{2}{2\sin x-\cos x+1}\)

Do vậy : 

\(I=2\int dx+\int\frac{\left(2\cos x+\sin x\right)dx}{2\sin x-\cos x+1}-2\int\frac{dx}{2\sin x-\cos x+1}\)

=\(2x+\ln\left|2\sin x-\cos x+1\right|-2J+C\)

Với 

\(J=\int\frac{dx}{2\sin x-\cos x+1}\)

20 tháng 1 2016

Biến đổi :

\(4\sin^2x+1=5\sin^2x+\cos^2x=\left(a\sin x+b\cos x\right)\left(\sqrt{3}\sin x+\cos x\right)+c\left(\sin^2x+\cos^2x\right)\)

\(=\left(a\sqrt{3}+c\right)\sin^2x+\left(a+b\sqrt{3}\right)\sin x.\cos x+\left(b+c\right)\cos^2x\)

Đồng nhấtheej số hai tử số 

\(\begin{cases}a\sqrt{3}+c=5\\a+b\sqrt{3}=0\\b+c=1\end{cases}\)

\(\Leftrightarrow\) \(\begin{cases}a=\sqrt{3}\\b=-1\\c=2\end{cases}\)

23 tháng 1 2016

Ta có :

\(f\left(x\right)=\int\frac{dx}{\sqrt{3}\sin x+\cos x}=\frac{1}{2}\int\frac{dx}{\frac{\sqrt{3}}{2}\sin x+\frac{1}{2}\cos x}=\frac{1}{2}\int\frac{dx}{\sin\left(x+\frac{\pi}{6}\right)}\)

\(=\int\frac{dx}{2\tan\left(\frac{x}{2}+\frac{\pi}{12}\right)\cos^2\left(\frac{x}{2}+\frac{\pi}{12}\right)}=\int\frac{dx}{\sin\left(\frac{x}{2}+\frac{\pi}{12}\right)\cos\left(\frac{x}{2}+\frac{\pi}{12}\right)}=\int\frac{d\left(\tan\frac{x}{2}+\frac{\pi}{12}\right)}{\tan\left(\frac{x}{2}+\frac{\pi}{12}\right)}=\ln\left|\tan\left(\frac{x}{2}+\frac{\pi}{12}\right)\right|+C\)