Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
: a) A= (2x - 1)(x - 3)
A=\(2x^2-6x-x+3=\left(2x^2-\frac{2.\sqrt{2}.7}{2\sqrt{2}}x+\frac{49}{8}\right)-\frac{49}{8}+3\)
=\(\left(\sqrt{2}x-\frac{7}{2\sqrt{2}}\right)^2-\frac{25}{8}\)>=\(-\frac{25}{8}\)
dấu = xảy ra khi \(x=\frac{7}{4}\)
=> Min A=\(-\frac{25}{8}\)khi x=\(\frac{7}{4}\)
b) B= (1 - 2x)(x - 3)
=\(-2x^2+6x+x-3\)
=\(-\left(2x^2-7x+\frac{49}{8}\right)-3-\frac{49}{8}\)
=\(-\frac{73}{8}-\left(\sqrt{2}x-\frac{7}{2\sqrt{2}}\right)^2\)<= \(-\frac{73}{8}\)
dấu = xảy ra khi x=\(\frac{7}{4}\)
=> MaxB=-73/8 khi x=7/4
a)Do \(\left(2x+\frac{1}{3}\right)^4\ge0\) => \(A\ge-1\)
Dấu "=" xảy ra khi \(2x+\frac{1}{3}=0=>2x=-\frac{1}{3}=>x=-\frac{1}{6}\)
Vậy Min A = -1 khi x = \(\frac{-1}{6}\)
b)Do \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0=>B\le3\)
Dấu "=" xảy ra khi \(\frac{4}{9}x-\frac{2}{15}=0=>\frac{4}{9}x=\frac{2}{15}=>x=\frac{3}{10}\)
Vậy Max B = 3 khi x = \(\frac{3}{10}\)
a; \(A=2x+6x^2-3-9x\)
\(=6x^2-7x-3\)
\(=6\left(x^2-\dfrac{7}{6}x-\dfrac{1}{2}\right)\)
\(=6\cdot\left(x^2-2\cdot x\cdot\dfrac{7}{3}+\dfrac{49}{6}-\dfrac{26}{3}\right)\)
\(=6\left(x-\dfrac{7}{3}\right)^2-52\ge-52\forall x\)
Dấu '=' xảy ra khi x=7/3
b: \(B=3+12x-2x-8x^2\)
\(=-8x^2+10x+3\)
\(=-8\left(x^2-\dfrac{5}{4}x-\dfrac{3}{8}\right)\)
\(=-8\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{53}{8}\right)\)
\(=-8\left(x-\dfrac{5}{2}\right)^2+53\le53\forall x\)
Dấu '=' xảy ra khi x=5/2