K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 5 2024

Lời giải:
$A=-x^2+2x+2xy-4y^2-10y-3$

$-A=x^2-2x-2xy+4y^2+10y+3$

$=(x^2-2xy+y^2)+3y^2-2x+10y+3$

$=(x-y)^2-2(x-y)+1+(3y^2+8y+\frac{16}{3})-\frac{10}{3}$

$=(x-y-1)^2+3(y+\frac{4}{3})^2-\frac{10}{3}\geq 0+3.0-\frac{10}{3}=\frac{-10}{3}$

$\Rightarrow A\leq \frac{10}{3}$
Vậy $A_{\max}=\frac{10}{3}$

Giá trị này đạt tại $x-y-1=y+\frac{4}{3}$

$\Leftrightarrow (x,y)=(\frac{-1}{3}, \frac{-4}{3})$

21 tháng 6 2018

\(C=-\left(x^2-2xy+4y^2-2x-10y+8\right)\)

     \(=-\left[\left(x^2-2xy+y^2\right)-2\left(x-y\right)+1+\left(3y^2-9y+3\right)+4\right]\)

       \(=-\left[\left(x-y\right)^2-2\left(x-y\right)+1+3\left(y-1\right)^2+4\right]\)

      \(=-\left[\left(x-y-1\right)^2+3\left(y-1\right)^2+4\right]\)

      \(=-\left[\left(x-y-1\right)^2+3\left(y-1\right)^2\right]-4\le-4\)

          GTLN là -4    tại x=2;y=1

18 tháng 9 2017

\(A=x^2-2x+50\)

\(A=x^2-2x+1+49\)

\(A=\left(x-1\right)^2+49\ge49\)

Dấu "=" xảy ra khi:

\(x=1\)

\(B=12x-x^2\)

\(B=-x^2+12x\)

\(B=-x^2+12x-36+36\)

\(B=-\left(x^2-12x+36\right)+36\)

\(B=-\left(x-6\right)^2+36\le36\)

Dấu "=" xảy ra khi:

\(x=6\)

\(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)

\(C=\left[\left(x+1\right)\left(x-6\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]\)

\(C=\left[x\left(x-6\right)+1\left(x-6\right)\right]\left[x\left(x-3\right)-2\left(x-3\right)\right]\)

\(C=\left(x^2-6x+x-6\right)\left(x^2-3x-2x+6\right)\)

\(C=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)

\(C=\left(x^2-5x\right)^2-36\ge-36\)

Dấu "=" xảy ra khi:

\(x^2-5x=0\)

\(\Rightarrow x\left(x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)