Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2-4xy+4y^2+2x+5=\left(x^2-4xy+4y^2\right)+\left(x^2+2x+1\right)+4=\left(x-2y\right)^2+\left(x+1\right)^2+4\)
\(\left(x-2y\right)^2\ge0;\left(x+1\right)^2\ge0\Rightarrow\left(x-2y\right)^2+\left(x+1\right)^2\ge0\)
\(\Rightarrow\left(x-2y\right)^2+\left(x+1\right)^2+4\ge4\)
vậy max của biểu thức trên = 4
\(A=-\left(x^2-3x-4\right)\)
\(=-\left(x^2-2.x\frac{3}{2}+\frac{9}{4}+\frac{7}{4}\right)\)
\(=-\left(\left(x-\frac{3}{2}\right)+\frac{7}{4}\right)\)
\(=-\frac{7}{4}-\left(x-\frac{3}{2}\right)^2\le\frac{-7}{4}\)
Vậy \(MAXA=\frac{-7}{4}\Leftrightarrow x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)
\(B=2\left(x^2-\frac{3}{2}x+1\right)=2\left(x^2-2\times x\times\frac{3}{4}+\frac{9}{16}-\frac{9}{16}+1\right)=2\left(x-\frac{3}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\)
MIN B = 7/8 <=> x=3/4
đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn
Bài này tìm được min thôi
Ta có: \(2x^2+x=2\left(x^2+\frac{1}{2}x+\frac{1}{16}\right)-\frac{1}{8}=2\left(x+\frac{1}{4}\right)^2-\frac{1}{8}\ge-\frac{1}{8}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(2\left(x+\frac{1}{4}\right)^2=0\Rightarrow x=-\frac{1}{4}\)
Vậy Min = -1/8 khi x = -1/4