K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2020

       \(x^2-4x+6\)

\(=x^2-4x+4+2\)

\(=\left(x-2\right)^2+2\)

\(\ge\left(3-2\right)^2+2\)

\(\ge1+2\)

\(\ge3\)

Dấu "=" xảy ra <=> x=3

Vậy min của biểu thức bằng 3 khi x=3

12 tháng 10 2020

                                                          Bài giải

Đặt \(A=x^2-4x+6=x^2-2\cdot2x+2^2+2=\left(x-2\right)^2+2\ge2\)

\(\Rightarrow\text{ Với }x\ge3\text{ }\text{thì }A_{min}\text{ khi }\left(x-2\right)^2_{min}\Rightarrow\text{ }x\text{ nhỏ nhất }\Rightarrow\text{ }x=3\)

Vậy với \(x=3\text{ thì }Min_A=3\)

12 tháng 10 2020

                                                                 Bài làm

Với x = 3 thì : 

Đặt \(A=x^2-4x+6=x^2+2\cdot2x+2\cdot2+2=\left(x+2\right)^2+2\ge2\forall x\)

\(\Rightarrow\text{ Khi }x=3\text{ thì }Min_A=\left(x+2\right)^2+2=5^2+2=27\)

12 tháng 10 2020

x2 - 4x + 6 = ( x2 - 4x + 4 ) + 2 = ( x - 2 )2 + 2 ≥ 2 ∀ x

Dấu "=" xảy ra khi x = 2

=> GTNN của biểu thức = 2 <=> x = 2

Ta thấy : \(4x^2+4x+1\)

\(=\left(2x+1\right)^2\)

Để P = \(\frac{4x^3+8x^2-x-2}{4x^2+4x+1}=\frac{4x^2\left(x+2\right)-\left(x+2\right)}{\left(x+2\right)^2}=\frac{\left(x+2\right)\left(4x^2-1\right)}{\left(x+2\right)^2}\)

\(=\frac{\left(2x-1\right)\left(2x+1\right)}{x+2}\)Xác định thì :

\(x+2\ne0\Rightarrow x\ne-2\)

30 tháng 4 2019

ban sai roi nha

18 tháng 1 2017

\(A_{min}=8-\frac{25}{4}\) khi x=5/2

Bmin=xem lại đề đúng như đề Bmin=5 khi x=0

C=8+25-(2x+5)^2

Cmax=8+25 khi x=-5/2 

Dmax=9 khi x=0

10 tháng 3 2016

gọi xy=k^2 với k là hằng số.

Ta có: [(x+y)/2]^2 >=xy <=>(x+y)^2 >= 4xy <=> (x+y) >= 2k =>min(x+y)=2k<=>x=y=k.

10 tháng 3 2016

a)Xét hai số dương tích bằng a( với a là hằng số):

ta có (x+y)^2 >= 4xy=4a <=> x=y

Vì x,y >0 nên x+y nhỏ nhất <=> x=y.