Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 3 ≤ x ≤ 7 => x - 3 ≥ 0; 7 - x ≥ 0
=> C ≥ 0
Dấu = xảy ra khi và chỉ khi x = 3 hoặc x = 7
C = (x - 3)(7 - x) ≤ \(\dfrac{1}{4}\)(x - 3 + 7 - x)2 = \(\dfrac{1}{4}\).42 = 4
Dấu "=" xảy ra <=> x - 3 = 7 - x <=> x = 5
\(G=\left(x^2+\sqrt[3]{3}\right)+\left(\dfrac{2}{x^3}+\dfrac{2}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}\right)-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{x^2.\sqrt[3]{3}}+3\sqrt[3]{\dfrac{2}{x^3}.\dfrac{2}{\sqrt{3}}.\dfrac{2}{\sqrt{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt[6]{3}.x+\dfrac{6}{\sqrt[3]{3}x}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{2\sqrt[6]{3}.x.\dfrac{6}{\sqrt[3]{3}x}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt{\dfrac{12\sqrt[6]{3}}{\sqrt[3]{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\)
Dấu "=" xảy ra khi và chỉ khi \(x=\sqrt[6]{3}\)
bài này bạn cho điều kiện sai rồi \(x\ge0;x\ne-1\) mới đúng nha
ta có : \(x^2\ge0\forall x\) và \(x+1\ge1>0\forall x\) \(\Leftrightarrow y=\dfrac{x^2}{x+1}\ge0\forall x\)
\(\Rightarrow\) Min của \(y=\dfrac{x^2}{x+1}\) là 0 khi \(x^2=0\Leftrightarrow x=0\)
vậy Min của \(y=\dfrac{x^2}{x+1}\) là 0 khi \(x=0\)
Lời giải:
Áp dụng BĐT AM-GM:
\(y=x+\frac{1}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{1}{x^2}\geq 3\sqrt[3]{\frac{1}{4}}\)
Do đó \(y_{\min}=3\sqrt[3]{\frac{1}{4}}\)
Dấu bằng xảy ra khi \(\frac{x}{2}=\frac{1}{x^2}\Leftrightarrow x=\sqrt[3]{2}\)
a) \(\dfrac{\left(x-1\right)^2}{x-2}=\dfrac{\left(x-2\right)^2+2\left(x-2\right)+1}{x-2}=x-2+2+\dfrac{1}{x-2}\ge2+2\sqrt{\left(x-2\right).\dfrac{1}{x-2}}=4\)
GTNN là 4 khi x=3
ta có
\(\sum x^2+xyz=4\)
\(4+2z\ge2xy+2z+z^2+xyz=\left(2+z\right)\left(z+xy\right)\)
\(2\ge z+xy\)
tương tự 2 mẫu còn lại ta có bđt sau
\(P\ge\sum\dfrac{x^4}{2}+\sum\dfrac{x^6}{6}\ge\sum\dfrac{x^4}{2}+\dfrac{\left(xyz\right)^2}{2}\left(Am-gm\right)\)
\(P\ge\dfrac{\left(\sum x^2+xyz\right)^2}{8}=2\)
@Vũ Tiền Châu @Akai Haruma @Lightning Farron @Phùng Khánh Linh @Nhã Doanh
@Ace Legona: sir tra hộ e câu này đúng hay sai đề vs ,nhẩm mãi không ra điểm rơi
điều kiện \(x\ne0\)
ta có : \(A=2-\dfrac{x+1}{x^2}\) nhỏ nhất \(\Leftrightarrow\) \(\dfrac{x+1}{x^2}\) lớn nhất
mà \(x^2>0\) với mọi \(x\) \(\Rightarrow\dfrac{x+1}{x^2}\) lớn nhất \(\Leftrightarrow x+1\) lớn nhất \(\Leftrightarrow x\) lớn nhất
ta không tìm được giá trị lớn nhất của \(x\) được
\(\Rightarrow A\) không có giá trị nhỏ nhất
vậy \(A=2-\dfrac{x+1}{x^2}\) không có giá trị nhỏ nhất
Điều kiện x \(\ne0\)
Ta có : \(A=2-\dfrac{x+1}{x^2}\) nhỏ nhất \(\Leftrightarrow\dfrac{x+1}{x^2}\) lớn nhất
Mà \(x^2>0\) với \(\forall x\) \(\Rightarrow\dfrac{x+1}{x^2}\) lớn nhất \(\Leftrightarrow x+1\) lớn nhất
Ta không tìm được giá trị lớn nhất của x được
\(\Rightarrow A\) không có giá trị nhỏ nhất
Vậy \(A=2-\dfrac{x+1}{x^2}\) không có giá trị nhỏ nhất