Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x+1\right)^2-\left(2x-3\right)^2-15\)
\(A=\left(x+1\right)^2-\left(2x-3\right)^2-15\ge-15\)
\(A_{min}=-15\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{3}{2}\end{cases}}}\)
P/s tham khảo nha
\(B=x^2-2xy+4y^2-2x-10y+2018\)
\(B=\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(3y^2-12y+12\right)+2005\)
\(B=\left(x-y\right)^2-2\left(x-y\right)+1+3\left(y-2\right)^2+2005\)
\(B=\left(x-y-1\right)^2+3\left(y-2\right)^2+2005\ge2005\)
VÌ \(\left(x-y-1\right)^2+3\left(y-2\right)^2\ge0\forall x;y\)
DẤU "="XẢY RA KHI Y=2;X=3
Bài 1.
A = 2x2 - x + 4 = 2( x2 - 1/2x + 1/16 ) + 31/8 = 2( x - 1/4 )2 + 31/8 ≥ 31/8 ∀ x
Dấu "=" xảy ra khi x = 1/4
=> MinA = 31/8 <=> x = 1/4
Bài 2.
A = -x2 + 3x + 2 = -( x2 - 3x + 9/4 ) + 17/4 = -( x - 3/2 )2 + 17/4 ≤ 17/4 ∀ x
Dấu "=" xảy ra khi x = 3/2
=> MaxA = 17/4 <=> x = 3/2
B = 3x2 + x - 5 = 3( x2 + 1/3x + 1/36 ) - 61/12 = 3( x + 1/6 )2 - 61/12 ≥ -61/12 ∀ x
Dấu "=" xảy ra khi x = -1/6
=> MinB = -61/12 <=> x = -1/6
C = x2 + 3/2x - 5 = ( x2 + 3/2x + 9/16 ) - 89/16 = ( x + 3/4 )2 - 89/16 ≥ -89/16 ∀ x
Dấu "=" xảy ra khi x = -3/4
=> MinC = -89/16 <=> x= -3/4
a/ x2 + 3x + 1
\(=x^2+2.\frac{3}{2}.x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+1\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Vậy MinA = -5/4 khi x + 3/2 = 0 => x = -3/2
b/ 9x2 + 3x + 1
\(=\left(3x\right)^2+2.3x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)
\(=\left(3x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy MinB = 3/4 khi 3x + 1/2 = 0 => 3x = -1/2 => x = -1/6
c/ -x2 + 2x - 1 = -(x2 - 2x + 1) = -(x - 1)2 \(\le0\)
Vậy MaxC = 0 khi x - 1 = 0 => x = 1
Đặt biểu thức là A
\(x^2+xy+y^2-3x-3y+2018\)
\(=\left(x^2+xy+y^2\right)-\left(3x+3y\right)+2018\)
\(=\left(x+y\right)^2-3\left(x+y\right)+2018\)
Ta có : (x - y)² ≥ 0
<=> x² + y² ≥ 2xy
<=> x² + 2xy + y² ≥ 4xy
<=> (x + y)² ≥ 4xy
<=> xy ≤ (x + y)²/4
<=> -xy ≥ -(x + y)²/4
--> A ≥ (x + y)² - 3(x + y) - (x + y)²/4
<=> A ≥ 3(x + y)²/4 - 3(x + y)
để dễ nhìn,ta đặt t = x + y
--> A ≥ 3t²/4 - 3t = 3(t²/4 - 2.t/2 + 1) - 3 = 3(t/2 - 1)² - 3 ≥ -3
Dấu " = " xảy ra <=> t/2 = 1 <=> t = 2 <=> x + y = 2 và x = y --> x = y = 1
Vậy MinA = -3 <=> x = y = 1