K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

a ) \(x^2-x+1\)

\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)

20 tháng 6 2017

Bạn làm giúp mih thêm vài bài nữa đc k

23 tháng 5 2017

\(A=3x^2+5x-2\)

\(A=3\left(x^2+\frac{5}{3}x-\frac{2}{3}\right)\)

\(A=3\left(x^2+2.\frac{5}{6}x+\left(\frac{5}{6}\right)^2-\frac{49}{36}\right)\)

\(A=3\left(x^2+2.\frac{5}{6}x+\left(\frac{5}{6}\right)^2\right)-\frac{49}{12}\)

\(A=3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\)

         Vì \(3\left(x+\frac{5}{6}\right)^2\ge0\)

                  Do đó \(3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\ge-\frac{49}{12}\)

Dấu = xảy ra khi \(x+\frac{5}{6}=0\Rightarrow x=-\frac{5}{6}\)

      Vậy Min A=\(-\frac{49}{12}\) khi x=\(-\frac{5}{6}\)

23 tháng 5 2017

mk làm ý a thôi, mấy ý sau dựa vào mà làm.

      A = \(3x^2+5x-2\)

 => \(\frac{A}{3}=x^2+\frac{5}{3}x-\frac{2}{3}\)(chia cả 2 vế cho 3)

\(\Leftrightarrow\frac{A}{3}=x^2+2.x.\frac{5}{6}+\left(\frac{5}{6}\right)^2-\frac{49}{36}\)

\(\Leftrightarrow\frac{A}{3}=\left(x+\frac{5}{6}\right)^2-\frac{49}{36}\)

\(\Rightarrow A=3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\ge-\frac{49}{12}\)

Đẳng thức xảy ra <=> x = - 5/6.

Vậy Min A = - 49/12 khi và chỉ khi x = - 5/6.

22 tháng 6 2016

\(A=-\left(x^2-2x\left(y+1\right)+\left(y+1\right)^2\right)-\left(4y^2-10y-5-\left(y+1\right)^2\right)\)

\(=-\left(x-y-1\right)^2-\left(3y^2-12y-6\right)\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+18\le18\)

Max A=18 khi y=2; x=3

22 tháng 6 2016

\(B=-\left(x^2+2x\left(y-1\right)+\left(y-1\right)^2\right)-\left(2y^2+2y-\left(y-1\right)^2\right)-15\)

\(=-\left(x+y-1\right)^2-\left(y+2\right)^2-10\le-10\)

Max B=-10 khi y=-2; x= 3

7 tháng 3 2016

Bài 1 :

=-5(x^2+4/5x+19/25)

=-5(x^2+2x.2/5+4/25+3/5)

=-5(x+2/5)^2-3

Vì (x+2/5)^2 lớn hơn hoặc bằng 0 =>-5(x+2/5)^2-3 nhỏ hơn hoặc bằng-3

Vậy Min là-3

30 tháng 9 2018

a)  \(A=4x^2-12x+2010\)

\(=4x^2-12x+9+2001\)

\(=\left(2x-3\right)^2+2001\ge2001\)

Dấu "=" xảy ra khi:  \(x=\frac{3}{2}\)

Vậy....

11 tháng 10 2020

A = 2x2 + 6x = 2( x2 + 3x + 9/4 ) - 9/2 = 2( x + 3/2 )2 - 9/2 ≥ -9/2 ∀ x

Dấu "=" xảy ra khi x = -3/2

=> MinA = -9/2 <=> x = -3/2

B = x2 - 2x + y2 - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 ∀ x, y

Dấu "=" xảy ra khi x = 1 ; y = 2

=> MinB = 1 <=> x = 1 ; y = 2

C = x2 - 2xy + 6y2 - 12x + 2y + 45

= ( x2 - 2xy + y2 - 12x + 12y + 36 ) + ( 5y2 - 10y + 5 ) + 4

= [ ( x2 - 2xy + y2 ) - ( 12x - 12y ) + 36 ] + 5( y2 - 2y + 1 ) + 4

= [ ( x - y )2 - 2( x - y ).6 + 62 ] + 5( y - 1 )2 + 4

= ( x - y - 6 )2 + 5( y - 1 )2 + 4 ≥ 4 ∀ x, y

Dấu "=" xảy ra khi x = 7 ; y = 1

=> MinC = 4 <=> x = 7 ; y = 1

D = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )

= [ ( x - 1 )( x + 6 ) ][ ( x + 2 )( x + 3 ) ]

= ( x2 + 5x - 6 )( x2 + 5x + 6 )

= ( x2 + 5x )2 - 36 ≥ -36 ∀ x

Dấu "=" xảy ra <=> x2 + 5x = 0

                        <=> x( x + 5 ) = 0

                        <=> x = 0 hoặc x = -5

=> MinD = -36 <=> x = 0 hoặc x = -5

11 tháng 10 2020

1) \(A=2x^2+6x=2\left(x^2+3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(2\left(x+\frac{3}{2}\right)^2=0\Rightarrow x=-\frac{3}{2}\)

Vậy Min(A) = -9/4 khi x = -3/2

2) \(B=x^2-2x+y^2-4y+6\)

\(B=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(B=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy Min(B) = 1 khi x = 1 và y = 2

3) \(C=x^2-2xy+6y^2-12x+2y+45\)

\(C=\left(x^2-2xy+y^2\right)-12\left(x-y\right)+36+\left(5y^2-10y+5\right)+4\)

\(C=\left(x-y\right)^2-12\left(x-y\right)+36+5\left(y-1\right)^2+4\)

\(C=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y-6\right)^2=0\\5\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=1\end{cases}}\)

Vậy Min(C) = 4 khi x = 7 và y = 1

4) \(D=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(D=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(D=\left(x^2+5x\right)^2-36\ge-36\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x^2+5x\right)^2=0\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy Min(D) = -36 khi x = 0 hoặc  x = -5