Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu trả lời suất sắc thì đc 2gp
Mà hình như câu trả lời này ko ss cho lăms
==" đào đâu ra GP???
\(A=x^2-5x+y^2+xy-4y+2017\)
\(A=x^2+x\left(y-5\right)+y^2-4y+2017\)
\(A=\left[x+\dfrac{\left(y-5\right)}{2}\right]^2-\dfrac{\left(y-5\right)^2}{4}+y^2-4y+2017\)
\(A=\left[x+\dfrac{\left(y-5\right)}{2}\right]^2-\dfrac{\left(y-5\right)^2}{4}+\left(y-2\right)^2+2013\)
chịu :)) Ngu lâu khó đạo tạo nên tới đây dừng bức :))
\(A=3x^2+5x-2\)
\(A=3\left(x^2+\frac{5}{3}x-\frac{2}{3}\right)\)
\(A=3\left(x^2+2.\frac{5}{6}x+\left(\frac{5}{6}\right)^2-\frac{49}{36}\right)\)
\(A=3\left(x^2+2.\frac{5}{6}x+\left(\frac{5}{6}\right)^2\right)-\frac{49}{12}\)
\(A=3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\)
Vì \(3\left(x+\frac{5}{6}\right)^2\ge0\)
Do đó \(3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\ge-\frac{49}{12}\)
Dấu = xảy ra khi \(x+\frac{5}{6}=0\Rightarrow x=-\frac{5}{6}\)
Vậy Min A=\(-\frac{49}{12}\) khi x=\(-\frac{5}{6}\)
mk làm ý a thôi, mấy ý sau dựa vào mà làm.
A = \(3x^2+5x-2\)
=> \(\frac{A}{3}=x^2+\frac{5}{3}x-\frac{2}{3}\)(chia cả 2 vế cho 3)
\(\Leftrightarrow\frac{A}{3}=x^2+2.x.\frac{5}{6}+\left(\frac{5}{6}\right)^2-\frac{49}{36}\)
\(\Leftrightarrow\frac{A}{3}=\left(x+\frac{5}{6}\right)^2-\frac{49}{36}\)
\(\Rightarrow A=3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\ge-\frac{49}{12}\)
Đẳng thức xảy ra <=> x = - 5/6.
Vậy Min A = - 49/12 khi và chỉ khi x = - 5/6.
a ) \(x^2-x+1\)
\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)
Ta có : \(5x-x^2+13=-x^2+5x+13\)
\(=-\left(x^2-5x-13\right)\)
\(=-\left[x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\dfrac{25}{4}-13\right]\)
\(=-\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{77}{4}\right]\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{77}{4}\)
Do \(-\left(x-\dfrac{5}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra \(\Leftrightarrow x-\dfrac{5}{2}=0\Rightarrow x=\dfrac{5}{2}\))
\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{77}{4}\le\dfrac{77}{4}\) hay \(A\le0\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\))
Vậy Max A=\(\dfrac{77}{4}\) tại x=\(\dfrac{5}{2}\)
c.
C=6(xy)^2-6(xy)y^2-(2x)^3+8(xy)^2+5(xy)^2-5(xy).y^2
C=(6+8+5)(xy)^2-(6+5)(xy)^2.y^2 -(2x)^3+8.(xy)^2
x.y=1; 2x=1
C=19-11.4-1+8
C=26-44=30-40-4-4=-10-8=-18
a)
<=>A=3x[10x^2-2x+1-2(5x^2-x-2)]=3x(1+4)
=3.5.x
x=15
A=3.5.15=15^2=(4^2-1).15=4.15.4-15=60.4-15
=240-15=225
Lời giải:
\(A=x^2-5x+y^2+xy-4y+2017\)
\(\Leftrightarrow x^2+x(y-5)+(y^2-4y+2017-A)=0\)
Vì pt xác định nên luôn có nghiệm. Tức là:
\(\Delta=(y-5)^2-4(y^2-4y+2017-A)\geq 0\)
\(\Leftrightarrow -3y^2+6y-8043+4A\geq 0\)
\(\Leftrightarrow 4A\geq 3y^2-6y+8043=3(y-1)^2+8040\geq 8040\)
\(\Rightarrow A\geq 2010\)
Vậy \(A_{\min}=2010\)