\(x+\dfrac{3}{x^2}\) với x > 0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2018

Vì 3 ≤ x ≤ 7 => x - 3 ≥ 0; 7 - x ≥ 0

=> C ≥ 0

Dấu = xảy ra khi và chỉ khi x = 3 hoặc x = 7

C = (x - 3)(7 - x) ≤ \(\dfrac{1}{4}\)(x - 3 + 7 - x)2 = \(\dfrac{1}{4}\).42 = 4

Dấu "=" xảy ra <=> x - 3 = 7 - x <=> x = 5

25 tháng 12 2018

\(G=\left(x^2+\sqrt[3]{3}\right)+\left(\dfrac{2}{x^3}+\dfrac{2}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}\right)-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{x^2.\sqrt[3]{3}}+3\sqrt[3]{\dfrac{2}{x^3}.\dfrac{2}{\sqrt{3}}.\dfrac{2}{\sqrt{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt[6]{3}.x+\dfrac{6}{\sqrt[3]{3}x}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{2\sqrt[6]{3}.x.\dfrac{6}{\sqrt[3]{3}x}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt{\dfrac{12\sqrt[6]{3}}{\sqrt[3]{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\)

Dấu "=" xảy ra khi và chỉ khi \(x=\sqrt[6]{3}\)

9 tháng 8 2017

bài này bạn cho điều kiện sai rồi \(x\ge0;x\ne-1\) mới đúng nha

ta có : \(x^2\ge0\forall x\)\(x+1\ge1>0\forall x\) \(\Leftrightarrow y=\dfrac{x^2}{x+1}\ge0\forall x\)

\(\Rightarrow\) Min của \(y=\dfrac{x^2}{x+1}\) là 0 khi \(x^2=0\Leftrightarrow x=0\)

vậy Min của \(y=\dfrac{x^2}{x+1}\) là 0 khi \(x=0\)

11 tháng 8 2017

Mình ghi sai đề chút xíu. Phải là x > -1

17 tháng 8 2018

ta có

\(\sum x^2+xyz=4\)

\(4+2z\ge2xy+2z+z^2+xyz=\left(2+z\right)\left(z+xy\right)\)

\(2\ge z+xy\)

tương tự 2 mẫu còn lại ta có bđt sau

\(P\ge\sum\dfrac{x^4}{2}+\sum\dfrac{x^6}{6}\ge\sum\dfrac{x^4}{2}+\dfrac{\left(xyz\right)^2}{2}\left(Am-gm\right)\)

\(P\ge\dfrac{\left(\sum x^2+xyz\right)^2}{8}=2\)

17 tháng 8 2018

@Vũ Tiền Châu @Akai Haruma @Lightning Farron @Phùng Khánh Linh @Nhã Doanh

11 tháng 1 2018

@Lightning Farron

12 tháng 1 2018

@Lightning Farron

12 tháng 8 2017

điều kiện \(x\ne0\)

ta có : \(A=2-\dfrac{x+1}{x^2}\) nhỏ nhất \(\Leftrightarrow\) \(\dfrac{x+1}{x^2}\) lớn nhất

\(x^2>0\) với mọi \(x\) \(\Rightarrow\dfrac{x+1}{x^2}\) lớn nhất \(\Leftrightarrow x+1\) lớn nhất \(\Leftrightarrow x\) lớn nhất

ta không tìm được giá trị lớn nhất của \(x\) được

\(\Rightarrow A\) không có giá trị nhỏ nhất

vậy \(A=2-\dfrac{x+1}{x^2}\) không có giá trị nhỏ nhất

13 tháng 8 2017

Điều kiện x \(\ne0\)

Ta có : \(A=2-\dfrac{x+1}{x^2}\) nhỏ nhất \(\Leftrightarrow\dfrac{x+1}{x^2}\) lớn nhất

\(x^2>0\) với \(\forall x\) \(\Rightarrow\dfrac{x+1}{x^2}\) lớn nhất \(\Leftrightarrow x+1\) lớn nhất

Ta không tìm được giá trị lớn nhất của x được

\(\Rightarrow A\) không có giá trị nhỏ nhất

Vậy \(A=2-\dfrac{x+1}{x^2}\) không có giá trị nhỏ nhất

11 tháng 7 2017

@Ace Legona: sir tra hộ e câu này đúng hay sai đề vs ,nhẩm mãi không ra điểm rơi

12 tháng 7 2017

thua :v

AH
Akai Haruma
Giáo viên
8 tháng 8 2017

Lời giải:

Áp dụng BĐT AM-GM:

\(y=x+\frac{1}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{1}{x^2}\geq 3\sqrt[3]{\frac{1}{4}}\)

Do đó \(y_{\min}=3\sqrt[3]{\frac{1}{4}}\)

Dấu bằng xảy ra khi \(\frac{x}{2}=\frac{1}{x^2}\Leftrightarrow x=\sqrt[3]{2}\)

Bài 1: Cho x,y, z > 0 thỏa mãn xyz = 1. Chứng minh rằng: \(\dfrac{\sqrt{1+x^3+y}^3}{xy}\)+ \(\dfrac{\sqrt{1+x^3+z^3}}{xz}\)+ \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\) ≥ \(3\sqrt{3}\) Bài 2: Choa, b, c,d > 0 thỏa mãn abcd = 1. CMR: 1) \(\dfrac{a^3}{c^6}\)+ \(\dfrac{c^3}{a^6}\)+ \(\dfrac{b^3}{d^6}\)+ \(\dfrac{d^3}{b^6}\) ≥ \(\dfrac{a^2}{c}\)+ \(\dfrac{c^2}{a}+\dfrac{b^2}{d}+\dfrac{d^2}{b}\) 2) \(\dfrac{a^5b^4}{c^{13}}\) + \(\dfrac{b^5c^4}{d^{13}}\) + \(\dfrac{c^5d^4}{a^{13}}\)+...
Đọc tiếp

Bài 1: Cho x,y, z > 0 thỏa mãn xyz = 1.

Chứng minh rằng:

\(\dfrac{\sqrt{1+x^3+y}^3}{xy}\)+ \(\dfrac{\sqrt{1+x^3+z^3}}{xz}\)+ \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\)\(3\sqrt{3}\)

Bài 2: Choa, b, c,d > 0 thỏa mãn abcd = 1. CMR:

1) \(\dfrac{a^3}{c^6}\)+ \(\dfrac{c^3}{a^6}\)+ \(\dfrac{b^3}{d^6}\)+ \(\dfrac{d^3}{b^6}\)\(\dfrac{a^2}{c}\)+ \(\dfrac{c^2}{a}+\dfrac{b^2}{d}+\dfrac{d^2}{b}\)

2) \(\dfrac{a^5b^4}{c^{13}}\) + \(\dfrac{b^5c^4}{d^{13}}\) + \(\dfrac{c^5d^4}{a^{13}}\)+ \(\dfrac{d^5a^4}{b^{13}}\)\(\dfrac{ab^2}{c^3}+\dfrac{bc^2}{d^3}+\dfrac{cd^2}{a^3}\)+ \(\dfrac{da^2}{b^3}\)

Bài 3: Cho a, b,c ,d > 0. CMR:

\(\dfrac{a^2}{b^5}+\dfrac{b^2}{c^5}+\dfrac{c^2}{d^5}+\dfrac{d^2}{a^5}\)\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+\dfrac{1}{d^3}\)

Bài 4: tìm giá trị nhỏ nhất của biểu thức:

A= x + y biết x, y > 0 thỏa mãn \(\dfrac{2}{x}+\dfrac{3}{y}\) = 1

B= \(\dfrac{ab}{a^2+b^2}\) + \(\dfrac{a^2+b^2}{ab}\) với a, b > 0

Bài 5: Với x > 0, chứng minh rằng:

( x+2 )2 + \(\dfrac{2}{x+2}\) ≥ 3

Giúp mk với, mai mk phải kiểm tra rồi!!

4
AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Câu 1:

Áp dụng BĐT Cauchy:

\(1+x^3+y^3\geq 3\sqrt[3]{x^3y^3}=3xy\)

\(\Rightarrow \frac{\sqrt{1+x^3+y^3}}{xy}\geq \frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)

Hoàn toàn tương tự:

\(\frac{\sqrt{1+y^3+z^3}}{yz}\geq \sqrt{\frac{3}{yz}}; \frac{\sqrt{1+z^3+x^3}}{xz}\geq \sqrt{\frac{3}{xz}}\)

Cộng theo vế các BĐT thu được:

\(\text{VT}\geq \sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\geq 3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\) (Cauchy)

Ta có đpcm

Dấu bằng xảy ra khi $x=y=z=1$

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Câu 4:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{2}{x}+\frac{3}{y}\right)(x+y)\geq (\sqrt{2}+\sqrt{3})^2\)

\(\Leftrightarrow 1.(x+y)\geq (\sqrt{2}+\sqrt{3})^2\Rightarrow x+y\geq 5+2\sqrt{6}\)

Vậy \(A_{\min}=5+2\sqrt{6}\)

Dấu bằng xảy ra khi \(x=2+\sqrt{6}; y=3+\sqrt{6}\)

------------------------------

Áp dụng BĐT Cauchy:

\(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\geq 2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)

\(a^2+b^2\geq 2ab\Rightarrow \frac{3(a^2+b^2)}{4ab}\geq \frac{6ab}{4ab}=\frac{3}{2}\)

Cộng theo vế hai BĐT trên:

\(\Rightarrow B\geq 1+\frac{3}{2}=\frac{5}{2}\) hay \(B_{\min}=\frac{5}{2}\). Dấu bằng xảy ra khi $a=b$

25 tháng 6 2017

Áp dụng BĐT Cauchy ta có:

\(M=4x^2-3x+\dfrac{1}{4x}+2011\)

\(=\left(4x^2-4x+1\right)+\left(x+\dfrac{1}{4x}\right)+2010\)

= \(\left(2x-1\right)^2+\left(x+\dfrac{1}{4x}\right)+2010\)

\(\ge0+2\sqrt{x.\dfrac{1}{4x}}+2010\) = \(1+2010=2011\)

=> Dấu = xảy ra <=> \(2x=1\) => \(x=\dfrac{1}{2}\)

Vậy ........................................

25 tháng 6 2017

thiếu đk = \(x\ne0\)