Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4x^2-12x+11\)
\(A=\left(2x\right)^2-2.2x.3+3^2+2\)
\(A=\left(2x-3\right)^2+2\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x-3\right)^2+2\ge2\forall x\)
Dấu = xảy ra \(\Leftrightarrow\left(2x-3\right)^2=0\Leftrightarrow2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Vậy Amin=2\(\Leftrightarrow x=\frac{3}{2}\)
\(B=x^2-2x+y^2+4y+6\)
\(B=\left(x^2-2x+1\right)+\left(y^2+2.2y+2^2\right)+1\)
\(B=\left(x-1\right)^2+\left(y+2\right)^2+1\)
Ta có: \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\forall x;y}\)
Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)
Vậy Bmin=1\(\Leftrightarrow x=1;y=-2\)
\(A=-x^2-6x+1\)
\(\Rightarrow-A=x^2+6x-1\)
\(-A=\left(x^2+2.3x+3^2\right)-10\)
\(-A=\left(x+3\right)^2-10\)
\(\Rightarrow A=-\left(x+3\right)^2+10\)
Ta có: \(\left(x+3\right)^2\ge0\forall x\Rightarrow-\left(x+3\right)^2\le0\forall x\Rightarrow-\left(x+3\right)^2+10\le10\forall x\)
Dấu = xảy ra \(\Leftrightarrow-\left(x+3\right)^2=0\Leftrightarrow\left(x+3\right)^2=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
Vậy Amax=10\(\Leftrightarrow\)x= -3
Sửa đề:
\(B=-2x^2-8x-6\)
\(B=-2.\left(x^2+2.2x+2^2\right)+2\)
\(B=-2.\left(x+2\right)^2+2\)
Ta có: \(2.\left(x+2\right)^2\ge0\forall x\Rightarrow-2.\left(x+2\right)^2\le0\forall x\Rightarrow-2.\left(x+2\right)^2+2\le2\forall x\)
Dấu = xảy ra \(\Leftrightarrow-2.\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy Bmax=2\(\Leftrightarrow x=-2\)
Đề phải là tìm min mới đúng
a, A=4x2-12x+11
=(4x2-12x+9)+2
=(2x-3)2+2
Vì (2x-3)2 \(\ge\) 0 => A=(2x-3)2+2 \(\ge\) 2
Dấu "=" xảy ra khi 2x-3=0 <=> x=3/2
Vậy Amin = 2 khi x=3/2
b, B=x2-2x+y2+4y+6
=(x2-2x+1)+(y2+4y+4)+1
=(x-1)2+(y+2)2+1
Vì \(\left(x-1\right)^2\ge0;\left(y+2\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
\(\Rightarrow B=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)
Dấu "=" xảy ra khi x=1,y=-2
Vậy Bmin = 1 khi x=1,y=-2
đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn
Câu 1:
\(A=x^2-3x+9\\ =x^2-3x+\dfrac{9}{4}+\dfrac{27}{4}\\ =\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{27}{4}\\ =\left(x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\\ Do\text{ }\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\\ \Rightarrow A=\left(x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\ge0\forall x\\ \text{Dấu “=” xảy ra khi: }\\ \left(x-\dfrac{3}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{3}{2}=0\\ \Leftrightarrow x=\dfrac{3}{2}\\ Vậy\text{ }A_{\left(Min\right)}=\dfrac{27}{4}\text{ }khi\text{ }x=\dfrac{3}{2}\)
\(B=9x^2-6x+2\\ =9x^2-6x+1+1\\ =\left(9x^2-6x+1\right)+1\\ =\left(3x-1\right)^2+1\\ Do\text{ }\left(3x-1\right)^2\ge0\forall x\\ \Rightarrow B=\left(3x-1\right)^2+1\ge1\forall x\\ \text{Dấu “=” xảy ra khi: }\\ \left(3x-1\right)^2=0\\ \Leftrightarrow3x-1=0\\ \Leftrightarrow3x=1\\ \Leftrightarrow x=\dfrac{1}{3}\\ Vậy\text{ }B_{\left(Min\right)}=1\text{ }khi\text{ }x=\dfrac{1}{3}\)
\(C=-x^2+2x+4\\ =-x^2+2x-1+5\\ =-\left(x^2-2x+1\right)+5\\ =-\left(x-1\right)^2+5\\ Do\text{ }\left(x-1\right)^2\ge0\forall x\\ \Rightarrow-\left(x-1\right)^2\le0\forall x\\ \Rightarrow C=-\left(x-1\right)^2+5\le5\forall x\\ \text{ Dấu “=” xảy ra khi: }\\ \left(x-1\right)^2=0\\ \Leftrightarrow x-1=0\\ \Leftrightarrow x=1\\ \text{Vậy }C_{\left(Max\right)}=5\text{ }khi\text{ }x=1\)
\(D=-x^2+4x\\ =-x^2+4x-4+4\\ =-\left(x^2-4x+4\right)+4\\ =-\left(x-2\right)^2+4\\ \\ Do\text{ }\left(x-2\right)^2\ge0\forall x\\ \Rightarrow-\left(x-2\right)^2\le0\forall x\\ \Rightarrow C=-\left(x-2\right)^2+4\le4\forall x\\ \text{ Dấu “=” xảy ra khi: }\\ \left(x-2\right)^2=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\\ \text{Vậy }C_{\left(Max\right)}=4\text{ }khi\text{ }x=2\)
Câu 2:
\(\text{Ta có : }x+y=2\\ \Rightarrow\left(x+y\right)^2=2^2\\ \Rightarrow x^2+2xy+y^2=4\\ Thay\text{ }x^2+y^2=10\text{ }vào\\ \Rightarrow2xy+10=4\\ \Rightarrow2xy=-6\\ \Rightarrow xy=-3\\ \text{Ta lại có : }x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\\ Thay\text{ }x^2+y^2=10;x+y=2;xy=-3\text{ }ta\text{ }được:\\ x^3+y^3=2\cdot\left(10+3\right)=26\)
Vậy \(x^3+y^3=26\text{ }tại\text{ }x+y=2;x^2+y^2=10\)
1: \(=\left(x+5\right)\left(x-4\right)\)
2: \(=\left(x-5\right)\left(x+4\right)\)
3: \(=2x^2-4x+x-2=\left(x-2\right)\left(2x+1\right)\)
4: \(=3x^2+3x-2x-2\)
\(=\left(x+1\right)\left(3x-2\right)\)
5: \(4x^2-7x-2\)
\(=4x^2-8x+x-2=\left(x-2\right)\left(4x+1\right)\)
6: \(=4x^2+8x-3x-6=\left(x+2\right)\left(4x-3\right)\)
a ) \(x^2-x+1\)
\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)