K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2018

a)\(-x^2-x+2\)

\(=-\left(x^2+x-2\right)\)

\(=-\left(x^2+x+\frac{1}{4}-\frac{7}{4}\right)\)

\(=-\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\le\frac{7}{4}.Với\forall x\in Z\)

Dấu "="  xảy ra khi 

\(x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)

Vậy Max = 7/4 <=> x = -1/2

9 tháng 7 2018

a, \(-\left(x^2+x\right)+2\)

=\(-\left(x^2+2\cdot\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}\right)+2\)

=\(-\left(x+\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)

Dấu = xảy ra khi : \(x+\frac{1}{2}=0\)

=> \(x=-\frac{1}{2}\) 

Vậy Max=9/4 khi x=-1/2 

Các câu khác tương tự nhé.

30 tháng 7 2018

từ từ ít ít từng câu thôi bạn ơi

12 tháng 10 2020

a) 2x (x-5) -(x2-10x +25)=0

\(\Leftrightarrow\)2x(x-5)-(x-5)2=0

\(\Leftrightarrow\)(x-5)(2x-x+5)=0

\(\Leftrightarrow\)(x-5)(x+5)=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-5=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)

b) x2 - 9 +3x(x+3) = 0

\(\Leftrightarrow\)(x2 - 9) +3x(x+3) =0

\(\Leftrightarrow\)(x-3)(x+3)+3x(x+3)=0

\(\Leftrightarrow\)(x+3)(x-3+3x)=0

\(\Leftrightarrow\)(x+3)(4x-3)=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x+3=0\\4x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-3\\4x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\frac{3}{4}\end{matrix}\right.\)

c) x3 - 16x = 0

\(\Leftrightarrow\)x(x2-16)=0

\(\Leftrightarrow\)x(x-4)(x+4)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

d) (2x+3)(x-2) - (x2 -4x+4) = 0

\(\Leftrightarrow\)(2x+3)(x-2) -(x-2)2=0

\(\Leftrightarrow\)(x-2)(2x+3-x+2)=0

\(\Leftrightarrow\)(x-2)(x+5)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

e) 9x2 -(x2 -2x +1)=0

\(\Leftrightarrow\)(3x)2-(x-1)2=0

\(\Leftrightarrow\)(3x-x+1)(3x+x-1)=0

\(\Leftrightarrow\)(2x+1)(4x-1)=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x+1=0\\4x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x=-1\\4x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=\frac{1}{4}\end{matrix}\right.\)

f)x3-4x2 -9x +36 = 0

\(\Leftrightarrow\)(x3-9x)-(4x2-36)=0

\(\Leftrightarrow\)x(x2-9)-4(x2-9)=0

\(\Leftrightarrow\)(x-4)(x2-9)=0

\(\Leftrightarrow\)(x-4)(x-3)(x+3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\\x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=4\\x=3\\x=-3\end{matrix}\right.\)

g) 3x - 6 = (x-1).(x-2)

\(\Leftrightarrow\)3(x-2)=(x-1)(x-2)

\(\Leftrightarrow\)x-1=3

\(\Leftrightarrow\)x=4

i) (x-2).(x+2) +(2x+1)2 =-5x.(x-3) =5 (?? đề sao vậy ??)

k) x2 -1 = (x-1).(2x+3)

\(\Leftrightarrow\)(x-1)(x+1)=(x-1)(2x+3)

\(\Leftrightarrow\)x+1=2x+3

\(\Leftrightarrow\)x-2x=3-1

\(\Leftrightarrow\)-x=2

\(\Leftrightarrow\)x=-2

l) (2x-1)2 +(x+3).(x-3) -5x(x-2)=6

\(\Leftrightarrow\)4x2-4x+1+x2-9-5x2+10x=6

\(\Leftrightarrow\)6x-8=6

\(\Leftrightarrow\)6x=14

\(\Leftrightarrow\)x=\(\frac{7}{3}\)

5 tháng 7 2018

1) a) \(\left(3x-1\right)\left(9x^2+3x+1\right)-4x\left(x-5\right)\)

\(=27x^3+9x^2+3x-9x^2-3x-1-4x^2+20x\)

\(=27x^3+\left(9x^2-9x^2-4x^2\right)+\left(3x-3x+20x\right)+\left(-1\right)\)

\(=27x^3-4x^2+20x-1\)

b)\(\left(7x+2\right)\left(3-4x\right)-\left(x+3\right)\left(x^2-3x+9\right)\)

\(=21x-28x^2+6-8x-x^3+3x^2-9x-3x^2+9x-27\)

\(=\left(21x-8x-9x+9x\right)+\left(-28x^2+3x^2-3x^2\right)\)\(+\left(6-27\right)\)\(+\left(-x^3\right)\)

\(=13x-28x^2-21-x^3\)

c)\(\left(4x+3\right)\left(4x-3\right)-\left(2-x\right)\left(4+2x+x^2\right)\)

\(=16x^2-12x+12x-9-8-4x-2x^2+4x+2x^2+x^3\)

\(=\left(16x^2-2x^2+2x^2\right)+\left(-12x+12x-4x+4x\right)\)\(+\left(-9-8\right)\)\(+x^3\)

\(=16x^2-17+x^3\)

d)\(\left(3x-8\right)\left(-5x+6\right)-\left(4x+1\right)\left(3x-2\right)\)

\(=-15x^2+18x+40x-48-12x^2+8x-3x+2\)

\(=\left(-15x^2-12x^2\right)+\left(18x+40x+8x-3x\right)\)\(+\left(-48+2\right)\)

\(=-27x^2+63x-46\)

e)\(\left(3x-6\right)4x-2x\left(3x+5\right)-4x^2\)

\(=12x^2-24x-6x^2-10x-4x^2\)

\(=\left(12x^2-6x^2-4x^2\right)+\left(-24x-10x\right)\)

\(=2x^2-34x\)

f)\(\left(5x-6\right)\left(6x-5\right)-x\left(3x+10\right)\)

\(=30x^2-25x-36x+30-3x^2-10x\)

\(=\left(30x^2-3x^2\right)+\left(-25x-36x-10x\right)+30\)

\(=27x^2-71x+30\)

5 tháng 7 2018

2) a)\(x\left(x+3\right)-x^2=6\)

\(\Rightarrow x^2+3x-x^2=6\)

\(\Rightarrow\left(x^2-x^2\right)+3x=6\)

\(\Rightarrow3x=6\)

\(\Rightarrow x=2\)

Vậy x=2

b) \(2x\left(x-5\right)+x\left(-2x-1\right)=6\)

\(\Rightarrow2x^2-10x-2x^2-x=6\)

\(\Rightarrow\left(2x^2-2x^2\right)+\left(-10x-x\right)=6\)

\(\Rightarrow-11x=6\)

\(\Rightarrow x=-\dfrac{6}{11}\)

\(\)Vậy \(x=-\dfrac{6}{11}\)

c) x(x+5)-(x+1)(x-2)=7

\(\Rightarrow x^2+5x-x^2+2x-x+2=7\)

\(\Rightarrow\left(x^2-x^2\right)+\left(5x+2x-x\right)=7-2\)

\(\Rightarrow6x=5\)

\(\Rightarrow x=\dfrac{5}{6}\)

Vậy x=\(\dfrac{5}{6}\)

d)\(\left(3x+4\right)\left(6x-3\right)-\left(2x+1\right)\left(9x-2\right)=10\)

\(\Rightarrow18x^2-9x+24x-12-18x^2+4x-9x+2=10\)

\(\Rightarrow\left(18x^2-18x^2\right)+\left(-9x+24x+4x-9x\right)+\left(-12+2\right)=10\)

\(\Rightarrow10x-10=10\)

\(\Rightarrow10x=20\)

\(\Rightarrow x=2\)

Vậy x=2

26 tháng 6 2017

a)Đặt \(A=3x^2-x+1\)

          \(A=3\left(x^2-2.\frac{1}{6}x+\frac{1}{36}\right)+\frac{11}{12}\)

            \(A=3\left(x-\frac{1}{6}\right)^2+\frac{11}{12}\)

                   Vì \(3\left(x-\frac{1}{6}\right)^2\ge0\Rightarrow3\left(x-\frac{1}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}\)

Dấu = xảy ra khi \(x-\frac{1}{6}=0\Rightarrow x=\frac{1}{6}\)

         Vậy Min A = \(\frac{11}{12}\) khi x=1/6

b)Tương tụ

5 tháng 12 2017

1)⇔x2+1x-3x+3=0

⇔x(x+1)-3(x+1)=0

⇔(x+1)(x-3)=0

⇔x+1=0 hoặc x-3=0

⇔x=-1 hoặc x=3

5 tháng 12 2017

4)⇔x(1+5x)=0

⇔x=0 hoặc 1+5x=0

⇔x=0 hoặc 5x=-1

⇔x=0 hoặc x=-0.2

13 tháng 12 2017

a. 2x3 - 5x2 = 5 - 2x

2x3 - 5x2 + 2x - 5 = 0

(2x + 2x ) - ( 5x2 + 5) = 0

2x ( x2 + 1) - 5 (  x2 + 1) =0

(  x2 + 1) ( 2x-5 ) = 0 

\(\orbr{\begin{cases}x^2+1=0\\2x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\\x=\frac{5}{2}\end{cases}}}\)