Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(-2\frac{3}{4}+\frac{1}{2}\right)^2\)
\(=\left(-\frac{11}{4}+\frac{1}{2}\right)^2\)
\(=\left(-\frac{11}{4}+\frac{2}{4}\right)^2\)
\(=\left(-\frac{9}{4}\right)^2\)
\(=\frac{81}{16}\)
\(\left(-2\frac{3}{4}+\frac{1}{2}\right)^2\)
\(=\left(\frac{-11}{4}+\frac{1}{2}\right)^2\)
\(=\left(\frac{-11}{4}+\frac{2}{4}\right)^2\)
\(=\left(\frac{-9}{4}\right)^2\)
\(=\frac{81}{16}\)
Ta có:
\(\frac{u}{v}=\frac{v}{t}\Rightarrow\frac{u^2}{v^2}=\frac{v^2}{t^2}=\frac{u}{v}.\frac{v}{t}=\frac{u}{t}\) (1)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{u^2}{v^2}=\frac{v^2}{t^2}=\frac{u^2+v^2}{v^2+t^2}\) (2)
Từ (1) và (2) => \(\frac{u^2+v^2}{v^2+t^2}=\frac{u}{t}\left(đpcm\right)\)
Ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)\(\Rightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
\(\Rightarrow\begin{cases}a^2=4.4=16\\b^2=4.9=36\\c^2=4.32:2=64\end{cases}\)\(\Rightarrow\begin{cases}a\in\left\{4;-4\right\}\\b\in\left\{6;-6\right\}\\c\in\left\{8;-8\right\}\end{cases}\)
Vậy các cặp giá trị (a;b;c) tương ứng thỏa mãn là: (4;6;8) ; (-4;-6;-8)
\(\frac{a}{2}=\frac{a^2}{2^2}=\frac{a^2}{4}\)
\(\frac{b}{3}=\frac{b^2}{3^2}=\frac{b^2}{9}\)
\(\frac{c}{4}=\frac{2c^2}{2\times4^2}=\frac{2c^2}{32}\)
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}\)
Áp dụng tính chất tỉ số bằng nhau, ta có:
\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
\(\left[\begin{array}{nghiempt}\frac{a^2}{4}=4\\\frac{b^2}{9}=4\\\frac{2c^2}{32}=4\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a^2=16\\b^2=36\\c^2=64\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=\pm4\\b=\pm6\\c=\pm8\end{array}\right.\)
bạn vào link này xem nhé
http://olm.vn/hoi-dap/question/97037.html
Ta có a.(a+b+c)+b.(a+b+c)+c.(a+b+c)=1/144
=>ta sử dụng phép phân phối có a+b+c chung
=>(a+b+c)(a+b+c)=1/144
=>a+b+c=1/12
từ đó tính a,b,c lần lượt là -1/2;3/4;-1/6
cậu toàn chép sai đề bài à nếu là c.(a+b+c)=-1/72 mới tính được
no no no
tui ko phải là ko bít đổi mà là ko đổi đc !!!
Ta có:
A =2100-299+298-297+.....+22-21
=>2A=2101-2100+299-298+.....+23-22
=>2A+A=(2101-2100+299-298+.....+23-22) + (2100-299+298-297+....+22-21)
=>3A=2101-2
=>A=\(\frac{2^{101}-2}{3}\)
Vậy A=\(\frac{2^{101}-2}{3}\).
\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(\Rightarrow2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
\(\Rightarrow2A+A=\left(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\right)+\left(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\right)\)
\(\Rightarrow3A=2^{101}-2\)
\(\Rightarrow A=\frac{2^{101}-2}{3}\)
\(B=\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=\frac{x^2+3}{x^2+3}+\frac{12}{x^2+3}=1+\frac{12}{x^2+3}\)
Để B lớn nhất thì \(\frac{12}{x^2+3}\) lớn nhất hay x2 + 3 nhỏ nhất
Có: x2 + 3 \(\ge3\)
Dấu "=" xảy ra khi và chỉ khi x2 = 0 => x = 0
Khi x = 0, \(B=\frac{0^2+15}{0^2+3}=\frac{0+15}{0+3}=\frac{15}{3}=5\)
Vậy \(B_{Max}=5\) khi và chỉ khi x = 0
mk thanks bn nhìu nha