Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1d.
Đề ko rõ
1e.
\(\Leftrightarrow\left(4cos^3x-3cosx\right)^2.cos2x-cos^2x=0\)
\(\Leftrightarrow cos^2x\left(4cos^2x-3\right)^2.cos2x-cos^2x=0\)
\(\Leftrightarrow cos^2x\left(2cos2x-1\right)^2cos2x-cos^2x=0\)
\(\Leftrightarrow cos^2x\left[\left(2cos2x-1\right)^2.cos2x-1\right]=0\)
\(\Leftrightarrow cos^2x\left(4cos^32x-4cos^22x+cos2x-1\right)=0\)
\(\Leftrightarrow cos^2x\left(cos2x-1\right)\left(4cos^22x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos2x=1\end{matrix}\right.\) \(\Leftrightarrow...\)
2b.
Đề thiếu
2c.
Nhận thấy \(cos2x=0\) ko phải nghiệm, chia 2 vế cho \(cos^32x\)
\(\frac{8sin^22x}{cos^22x}=\frac{\sqrt{3}sin2x}{cos2x}.\frac{1}{cos^22x}+\frac{1}{cos^22x}\)
\(\Leftrightarrow8tan^22x=\sqrt{3}tan2x\left(1+tan^22x\right)+1+tan^22x\)
\(\Leftrightarrow\sqrt{3}tan^32x-7tan^22x+\sqrt{3}tan2x+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1}{\sqrt{3}}\\tanx=\sqrt{3}-2\\tanx=\sqrt{3}+2\end{matrix}\right.\)
\(\Leftrightarrow...\)
a/ \(y=2\left(\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx\right)+5=2sin\left(x-\frac{\pi}{6}\right)+5\)
Do \(-1\le sin\left(x-\frac{\pi}{6}\right)\le1\Rightarrow3\le y\le7\)
b/ \(y=2cos\left(x+\frac{\pi}{6}\right)cos\left(-\frac{\pi}{6}\right)=\sqrt{3}cos\left(x+\frac{\pi}{6}\right)\)
Do \(-1\le cos\left(x+\frac{\pi}{6}\right)\le1\Rightarrow-\sqrt{3}\le y\le\sqrt{3}\)
c/ \(y=2\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)+12=2sin\left(x+\frac{\pi}{3}\right)+12\)
Do \(-1\le sin\left(x+\frac{\pi}{3}\right)\le1\Rightarrow10\le y\le14\)
e/
\(y=5sinx+6cosx-7\)
\(=\sqrt{61}\left(\frac{5}{\sqrt{61}}sinx+\frac{6}{\sqrt{61}}cosx\right)-7\)
\(=\sqrt{61}\left(sinx.cosa+cosx.sina\right)-7\) (với \(a\in\left(0;\pi\right)\) sao cho \(cosa=\frac{5}{\sqrt{61}}\))
\(=\sqrt{61}.sin\left(x+a\right)-7\)
Do \(-1\le sin\left(x+a\right)\le1\Rightarrow7-\sqrt{61}\le y\le7+\sqrt{61}\)
\(y_{min}=7-\sqrt{61}\) khi \(sin\left(x+a\right)=-1\)
\(y_{max}=7+\sqrt{61}\) khi \(sin\left(x+a\right)=1\)
f/
\(y=2\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)+3\)
\(=2sin\left(x+\frac{\pi}{3}\right)+3\)
\(\Rightarrow1\le y\le5\)
\(y_{min}=1\) khi \(sin\left(x+\frac{\pi}{3}\right)=-1\)
\(y_{max}=5\) khi \(x+\frac{\pi}{3}=1\)
c/
\(y=2\left(1-cos2x\right)+sin2x+cos2x\)
\(=sin2x-cos2x+2=\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)+2\)
Do \(-1\le sin\left(2x-\frac{\pi}{4}\right)\le1\)
\(\Rightarrow2-\sqrt{2}\le y\le2+\sqrt{2}\)
\(y_{min}=2-\sqrt{2}\) khi \(sin\left(2x-\frac{\pi}{4}\right)=-1\)
\(y_{max}=2+\sqrt{2}\) khi \(sin\left(2x+\frac{\pi}{4}\right)=1\)
d/
\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)
\(=1-3sin^2x.cos^2x\)
\(=1-\frac{3}{4}sin^22x\)
Mà \(0\le sin^22x\le1\Rightarrow\frac{1}{4}\le y\le1\)
\(y_{min}=\frac{1}{4}\) khi \(sin^22x=1\)
\(y_{max}=1\) khi \(sin2x=0\)
c/
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}-\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow sinx=\frac{\sqrt{2}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k2\pi\\x=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
d/
\(\Leftrightarrow sin2x-2cos2x-5=2sin2x-cos2x-6\)
\(\Leftrightarrow sin2x+cos2x=1\)
\(\Leftrightarrow\sqrt{2}sin\left(2x+\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow sin\left(2x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}2x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\2x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)
a/ ĐKXĐ:...
\(\Leftrightarrow\frac{sinx}{cosx}-\frac{\sqrt{2}}{cosx}=1\)
\(\Leftrightarrow sinx-\sqrt{2}=cosx\)
\(\Leftrightarrow sinx-cosx=\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=\sqrt{2}\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow x-\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{3\pi}{4}+k2\pi\)
b/
ĐKXĐ: ...
\(\Leftrightarrow\left(2sinx-1\right)\left(sin4x-1\right)+cos4x\left(2sinx-1\right)=0\)
\(\Leftrightarrow2sinx.sin4x-2sinx-sin4x+1+2sinx.cos4x-cos4x=0\)
\(\Leftrightarrow2sinx\left(sin4x+cos4x\right)-\left(sin4x+cos4x\right)-\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sin4x+cos4x\right)-\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sin4x+cos4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sin4x+cos4x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sin\left(4x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\4x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\4x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=\frac{k\pi}{2}\\x=\frac{\pi}{8}+\frac{k\pi}{2}\left(l\right)\end{matrix}\right.\)
a.
\(-1\le sinx\le1\Rightarrow-7\le y\le-3\)
\(y_{min}=-7\) khi \(sinx=-1\)
\(y_{max}=-3\) khi \(sinx=1\)
b.
\(-1\le cos\left(x+\frac{\pi}{3}\right)\le1\Rightarrow1\le y\le5\)
\(y_{min}=1\) khi \(cos\left(x+\frac{\pi}{3}\right)=-1\)
\(y_{max}=5\) khi \(cos\left(x+\frac{\pi}{3}\right)=1\)
c.
\(0\le1-cosx\le2\Rightarrow-5\le y\le3\sqrt{2}-5\)
\(y_{min}=-5\) khi \(cosx=1\)
\(y_{max}=3\sqrt{2}-5\) khi \(cosx=-1\)
d.
ĐKXĐ: \(0\le sinx\Rightarrow0\le sinx\le1\Rightarrow1\le y\le3\)
\(y_{min}=1\) khi \(sinx=0\)
\(y_{max}=3\) khi \(sinx=1\)
\(a,y\)\(=sin\sqrt{x^2-2x}\)
Đkxđ: \(\sqrt{x^2-2x}\in R\)
\(\Leftrightarrow x^2-2x\ge0\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x\le0\\x\ge2\end{matrix}\right.\)
\(\Rightarrow D:(-\infty;0]\cup[2;+\infty)\)
\(b,y\)\(=\dfrac{2sinx}{cos2x-1}\)
Đkxđ: cos2x-1\(\in R\)
\(\Leftrightarrow cos2x-1\ne0\)
\(\Leftrightarrow x\ne\dfrac{k\pi}{2}\)
\(\Rightarrow D:R\backslash\left\{\dfrac{k\pi}{2};k\in\right\}\)
\(0\le cos^2x\le1\Rightarrow2\le3-cos^2x\le3\)
\(\Rightarrow\frac{8}{3}\le y\le4\)
\(y_{min}=\frac{8}{3}\) khi \(cosx=0\)
\(y_{max}=4\) khi \(cos^2x=1\)
b/ \(0\le sin^23x\le1\Rightarrow1\le\sqrt{2-sin^23x}\le\sqrt{2}\)
\(\Rightarrow\frac{1}{\sqrt{2}}\le y\le1\)
\(y_{min}=\frac{1}{\sqrt{2}}\) khi \(sin3x=0\)
\(y_{max}=1\) khi \(sin^23x=1\)
c/ \(y=\sqrt{3}\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)+sin2x+1\)
\(=-\sqrt{3}\left(cos^2x-sin^2x\right)+sin2x+1\)
\(=-\sqrt{3}cos2x+sin2x+1\)
\(=2\left(\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x\right)+1=2sin\left(2x-\frac{\pi}{3}\right)+1\)
Do \(-1\le sin\left(2x-\frac{\pi}{3}\right)\le1\Rightarrow-1\le y\le3\)
\(y_{min}=-1\) khi \(sin\left(2x-\frac{\pi}{3}\right)=-1\)
\(y_{max}=3\) khi \(sin\left(2x-\frac{\pi}{3}\right)=1\)
a.
\(y=2sinx-\left(1-sin^2x\right)=sin^2x+2sinx-1=\left(sinx+1\right)^2-2\ge-2\)
\(\Rightarrow y_{min}=-2\)
\(y=sin^2x+2sinx-1=\left(sinx-1\right)\left(sinx+3\right)+2\le2\)
\(\Rightarrow y_{max}=2\)
b.
\(1\le3-2sinx\le5\Rightarrow6\le y\le5+\sqrt{5}\)
\(y_{min}=6\) ; \(y_{max}=5+\sqrt{5}\)