Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=-5x^2-2xy-2y^2+14x+10y-1\)
\(=-\left(4x^2-8x+4\right)-\left(y^2-4y+4\right)-\left(x^2+y^2+2xy-6x-6y+9\right)+16\)
\(=-4\left(x-1\right)^2-\left(y-2\right)^2-\left(x+y-3\right)^2+16\le16\)
Dấu \(=\)khi \(\hept{\begin{cases}x-1=0\\y-2=0\\x+y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\).
Bài 1:
a)\(F=x^2+26y^2-10xy+14x-76y+59\)
\(=\left(x^2-2\cdot x\cdot5y+25y^2\right)+\left(14x-70y\right)+\left(y^2-6x+9\right)+50\)
\(=[\left(x-5y\right)^2+14\left(x-5y\right)+49]+\left(y-3\right)^2+1\)
\(=\left(x-5y+7\right)^2+\left(y-3\right)^2+1\ge1\)
Để Fmin=1 thì y=3;x=8
b)\(H=m^2-4mp+5p^2+10m-22p+28\)
\(=\left(m^2-2\cdot m\cdot2p+4p^2\right)+\left(10m-20p\right)+\left(p^2-2p+1\right)+27\)
\(=[\left(m-2p\right)^2+2\cdot\left(m-2p\right)\cdot5+25]+\left(p-1\right)^2+2\)
\(=\left(m-2p+5\right)^2+\left(p-1\right)^2+2\ge2\)
Để Hmin=2 thì p=1;m=-3
Answer:
\(B=-5x^2-5y^2+8x-6y-1\)
\(\Rightarrow B=\left(-5x^2+8x-\frac{16}{5}\right)+\left(-5y^2-6y-\frac{9}{5}\right)+4\)
\(\Rightarrow B=-5\left(x-\frac{4}{5}\right)^2-5\left(y+\frac{3}{5}\right)^2+4\)
Có:
\(\hept{\begin{cases}\left(x-\frac{4}{5}\right)^2\ge0\forall x\Rightarrow-5\left(x-\frac{4}{5}\right)^2\le0\\\left(y+\frac{3}{5}\right)^2\ge0\forall y\Rightarrow-5\left(y+\frac{3}{5}\right)^2\le0\end{cases}}\)
Do vậy:
\(-5\left(x-\frac{4}{5}\right)^2-5\left(y+\frac{3}{5}\right)^2+4\le4\forall x;y\) hay \(B\le4\)
Vậy "=" xảy ra khi:
\(\hept{\begin{cases}x-\frac{4}{5}=0\\y+\frac{3}{5}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{5}\end{cases}}\)
Vậy giá trị lớn nhất của biểu thức \(B=4\) khi \(\hept{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{5}\end{cases}}\)
\(C=-5x^2-2xy-2y^2+14x+10y-1\)
\(\Rightarrow5C=\left(-25x^2-10xy-y^2+70x+14y-49\right)+\left(-9y^2+36y-36\right)+80\)
\(\Rightarrow5C=-\left(5x+y-7\right)^2-9\left(y-2\right)^2+80\)
\(\Rightarrow C=-\frac{1}{5}\left(5x+y-7\right)^2-\frac{9}{2}\left(y-2\right)^2+16\)
Có:
\(\hept{\begin{cases}\left(5x+y-7\right)^2\ge0\forall x;y\Rightarrow-\frac{1}{5}\left(5x+y-7\right)^2\le0\\\left(y-2\right)^2\ge0\forall y\Rightarrow-\frac{9}{5}\left(y-2\right)^2\le0\end{cases}}\)
Do vậy:
\(-\frac{1}{5}\left(5x+y-7\right)^2-\frac{9}{5}\left(y-2\right)^2+16\le16\) hay \(C\le16\)
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}5x+y-7=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy giá trị lớn nhất của biểu thức \(C=16\) khi \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)
\(A=-\left(x^2+y^2+9-2xy+6x-6y\right)-4\left(x^2+2x+1\right)-\left(y^2-4y+4\right)+16\)
\(A=-\left(x-y+3\right)^2-4\left(x+1\right)^2-\left(y-2\right)^2+16\le16\)
\(A_{max}=16\) khi \(\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)