K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm: 

Giả sử \(b>c\)

Với mọi \(x\)ta có \(\left(x+a\right)\left(x-4\right)-7=\left(x+b\right)\left(x+c\right)\left(1\right)\)

Với \(x=4\)ta được \(\left(x+b\right)\left(x+c\right)=\left(4+a\right)\cdot0-7=-7\)

Vì \(b,c\in Z\)và \(b>c\)và chúng đề có vai trò như nhau nên ta có hai trường hợp sau:

Trường hợp 1:  \(\hept{\begin{cases}b+4=1\\c+4=-7\end{cases}\Rightarrow\hept{\begin{cases}b=-3\\c=-11\end{cases}}}\). Thay vào \(\left(1\right)\)ta được

\(\left(x+a\right)\left(x-4\right)-7=\left(x-3\right)\left(x-11\right)\)

\(\Leftrightarrow x^2+\left(a-4\right)\cdot x-\left(4a+7\right)=x^2-14x+33\)

\(\Leftrightarrow\left(a-4\right)\cdot x-\left(4a+7\right)=-14x+33\).

\(\Leftrightarrow a-4=-14\)và \(4a+7=-33\Leftrightarrow a=-10\)

Trường hợp 2: \(\hept{\begin{cases}b+4=7\\c+4=-1\end{cases}\Leftrightarrow\hept{\begin{cases}b=3\\c=-5\end{cases}}}\).Giải tương tự như trên ta được \(a=2\)

Vậy \(\orbr{\begin{cases}a=-10;b=-3;c=-11\\a=-10;b=-11;c=3\end{cases}}\)hoặc \(\orbr{\begin{cases}a=2;b=3;c=-5\\a=2;b=-5;c=3\end{cases}}\)

Bạn nhé khi mk giải thì mk chỉ có 2 trường hợp và ra kết quả a,b,c chỉ có hai nhưng khi mình kết luận mình đã kl đến 4 đáp số bởi vì như bạn đã đọc mk đã giả sử b>c nên cả trong hai trường hợp mk chỉ xét b>c thôi vd: ở trường hợp 1 mk chỉ xét b+4=1; c+4=-7 thì suy ra b=-3;c=-11 chứ mình không có xét th b+4=-7;c+4=1 nhé !

                                                                     ~~~~~~~~ GOOD LUCK ~~~~~~~~~~~~~~`

2 tháng 4 2017

Bài này khó dữ chị ơi! Em chỉ mới học lớp 4! Sorry chị nha!

2 tháng 4 2017

em bó tay.com. vn

em mới lớp 5 thui chị ơi

16 tháng 7 2016

a)  x^6 - x^4 + 2x^3 + 2x^2 

=x2(x4-x2+2x+2)

=x2[x4-2x3+2x2+2x3-4x2+4x+x2-2x+2]

=x2[x2(x2-2x+2)+2x(x2-2x+2)+(x2-2x+2)

=x2[(x2+2x+12)(x2-2x+2)]

=x2(x+1)2(x2-2x+2)

b) x^(m+4) + x^(m+1) - x - 1

Ta thấy x=-1 là nghiệm của đa thức

=>đa thức có 1 hạng tử là x+1

=>đa thức đc phân tích là

=(x+1)(xm+3-xm+2+xm+1-1)

18 tháng 3 2020

cái này mik chịu, mik mới có lớp 7

19 tháng 3 2020

1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)

Mà b+a>b-a ; p là số nguyên tố 

=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)

=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)

Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4

Mà p là số nguyên tố 

=> \(p^2\)chia 8 dư 1

=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)

+Số chính phương chia 3 luôn dư 0 hoặc 1

Mà p là số nguyên tố lớn hơn 3

=> \(p^2\)chia 3 dư 1

=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)

Từ (1);(2)=> \(a⋮12\)

Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)

Y
5 tháng 7 2019

Mk nghĩ yêu cầu là tìm đa thức f(x) sai thì bn cmt nha

Gọi dư khi chia f(x) cho (x - 2)(x - 3) là ax + b

h(x), g(x) lần lượt là thương khi chia f(x) cho x - 2; x - 3

+ \(f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\)

+ Ta có : \(\left\{{}\begin{matrix}f\left(x\right)=\left(x-2\right)\cdot h\left(x\right)+5\\f\left(x\right)=\left(x-3\right)\cdot g\left(x\right)+7\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

Do đó : \(f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\)

Y
5 tháng 7 2019

yêu cầu j z bn?

15 tháng 12 2015

Nguyen Huu The lih tih, ko lm thì thôi đi