Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu là lớp 9 thì có thể dùng delta. Nhưng nếu lớp 7 thì theo cách này:
Giải:
Với \(x=2\) thay vào \(A\left(x\right)\) thì ta có:
\(A\left(2\right)=2^2-5m.2+10m-4\)
\(=4-10m+10m-4=0\)
\(\Rightarrow2\) là 1 nghiệm của đa thức \(A\left(x\right)\)
Vậy đa thức \(A\left(x\right)\) có hai nghiệm mà nghiệm này bằng hai lần nghiệm kia
\(\Leftrightarrow\) Nghiệm còn lại của đa thức \(A\left(x\right)\) là \(1\) hoặc là \(4\)
\(*)\) \(x=1\) là nghiệm của đa thức \(A\left(x\right)\Leftrightarrow A\left(1\right)=0\)
\(\Leftrightarrow5m-3=0\Leftrightarrow m=\dfrac{3}{5}\)
\(*)\) \(x=4\) là nghiệm của đa thức \(A\left(x\right)\Leftrightarrow A\left(4\right)=0\)
\(\Leftrightarrow12-10m=0\Leftrightarrow m=\dfrac{6}{5}\)
Vậy \(m=\dfrac{3}{5}\) hoặc \(m=\dfrac{6}{5}\) là các giá trị cần tìm
Ta có:
\(A\left(x\right)=x^2-5mx+10m-4\)
\(\Leftrightarrow\Delta=\left(5m-4\right)^2\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1=5m-2\\x_2=2\end{matrix}\right.\)
Ta có 2 trường hợp:
Trường hợp 1: Nếu \(x_1=2x_2\)
\(\Leftrightarrow5m-2=4\Leftrightarrow5m=6\Leftrightarrow m=\dfrac{6}{5}\)
Trường hợp 2: Nếu \(x_2=2x_1\)
\(\Leftrightarrow2\left(5m-2\right)=2\Leftrightarrow5m-2=1\)
\(\Leftrightarrow5m=3\Leftrightarrow m=3\div5=\dfrac{3}{5}\)
Vậy \(m=\dfrac{3}{5}\) hoặc \(m=\dfrac{6}{5}\) là các giá trị cần tìm
a, Ta có: \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=\left(4x^2-4+3x^3-2x-x^5\right)+\left(3x-2x^3+4-x^4+x^5\right)\)
\(=4x^2-4+3x^3-2x-x^5+3x-2x^3+4-x^4+x^5\)
\(=4x^2+x^3+x-x^4\) (cj ko cs tg,e check hộ cj nhé!)
Vậy \(M\left(x\right)=-x^4+x^3+4x^2+x\)
b, TH1 : Thay x = -1 vào đa thức trên ta đc
\(4.\left(-1\right)^2+\left(-1\right)^3+\left(-1\right)-\left(-1\right)^4=4.1-1-1-1=4-3=1\)
TH2 : Thay x = 2 vào đa thức trên ta đc
\(-2^4+2^3+4.2^2+2=-16+8+16+2=10\)
c, cj ko hiểu đề lắm, cj đi hok hơi nhiều nên cx ko chắc đáp án lắm, có j sai ko hiểu chỗ nào ib cj nhé !
Mình vẫn chưa hiểu câu hỏi lắm
"Nhiệm" là gì?
Và "nghiệm kia" là cái gì?