Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(m+1)x+2y=m-1 (m+1)x-2y=m-1 (1)
<=>
2mx-yx-y=m2+2m 2.m^2.x-2y=2m^2+4m (2)
(2)-(1) ta được
(2.m^2-m-1)x=2.m^2+3m+1
<=>x=(2.m^2+3m+1)/(2.m^2-m-1)
<=>x=1 + 4m+2/2.m^2-m-1
<=>x=1+ 2m+1/(m-1)(m+1/2) (3)
từ (3) ta đã thấy điều kiện của hệ số m đã cho khác 1
và điều kiện để hệ có nghiệm duy nhất là m khác 1 ; m khác -1/2
với các điều kiện đó từ (3) => x=1+ 2/m-1 (#)
thay (#) vào (1) ta được m+1+ 2(m+1)/m-1 -2y=m-1
=>y = 1+ (m+1)/m-1 =2 + 2/m-1 (##)
từ (#) và (##) ta => x; y là nghiệm nguyên duy nhất
m-1 thuộc Ư(2)=+-1;+-2
=>m=-1;0;2;3
HOK TỐT nhé
a, tự làm
b,\(\hept{\begin{cases}x-my=0\\mx-y=m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=my\\m^2y-y=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=my\\y\left(m^2-1\right)\left(1\right)\end{cases}}\)
để hpt có nghiệm duy nhất =>pt(1) có nghiệm duy nhất =>\(m^2-1\ne0\Rightarrow m\ne\pm1\)
c, \(\Rightarrow\hept{\begin{cases}x=my\\y=\frac{m+1}{m^2-1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{m}{m-1}\\y=\frac{1}{m-1}\end{cases}}\)
để x>0,y>0 =>\(\hept{\begin{cases}\frac{m}{m-1}>0\\\frac{1}{m-1>0}\end{cases}}\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}m< 0\\m>1\end{cases}}\\m>0\end{cases}}\Rightarrow m>0\)
d,để x+2y=1=>\(\frac{m}{m-1}+\frac{2}{m-1}=1\Leftrightarrow m+2=m-1\)
\(\Leftrightarrow0m=-3\)(vô lí)
e,ta có x+y=\(\frac{m}{m-1}+\frac{1}{m-1}=\frac{m+1}{m-1}=1+\frac{2}{m-1}\)(lưu ý chỉ làm đc với m\(\inℤ\))
để\(1+\frac{2}{m-1}\inℤ\Rightarrow m-1\inư\left(2\right)\)
\(\Rightarrow m-1\in\left\{\pm1;\pm2\right\}\Rightarrow m\in\left\{3;2;0\right\}\)
mấy cái này dễ mà k lm đc à ......................................nói v thui chứ t cũng k bik làm ^^
a) thay m=2 ... tự thay
\(\Leftrightarrow\int^{2y+x=2\left(1\right)}_{2x-2y=1\left(2\right)}\)
=>2y+x-2=0(1)
=>-2y+2x-1=0(2)
=>-(2y-2x+1)=0(2)
=>2y-2x+1=0(2)
vẽ đồ thị hàm số ra
=>x=1;\(y=\frac{1}{2}\)hoặc 0,5
b,c ko biết nên ns thế nào ^^