Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)
\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)
Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá
2.
\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)
Đặt \(x+y+z=t\Rightarrow0< t\le1\)
\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
3.
\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)
Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)
Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)
4.
ĐKXĐ: \(-2\le x\le2\)
\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)
\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)
Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)
\(y_{min}=-2\) khi \(x=-2\)
Do d qua A nên: \(a+b=3\Rightarrow b=3-a\)
Gọi B và C là giao điểm của d với Ox và Oy
\(\Rightarrow\left\{{}\begin{matrix}a.x_B+b=0\\a.0+b=y_C\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_B=-\frac{b}{a}=\frac{a-3}{a}\\y_C=b=3-a\end{matrix}\right.\)
\(\Rightarrow B\left(\frac{a-3}{a};0\right)\) ; \(C\left(0;3-a\right)\)
d cắt tia Ox và Oy \(\Rightarrow\left\{{}\begin{matrix}\frac{a-3}{a}>0\\3-a>0\end{matrix}\right.\) \(\Rightarrow a< 0\)
\(\Rightarrow OB=\frac{a-3}{a}\) ; \(OC=3-a\)
Gọi H là chân đường cao hạ từ O xuống d \(\Rightarrow OH=\sqrt{5}\)
Áp dụng hệ thức lượng trong tam giác vuông OBC
\(\frac{1}{OH^2}=\frac{1}{OB^2}+\frac{1}{OC^2}\Leftrightarrow\frac{1}{5}=\frac{a^2}{\left(a-3\right)^2}+\frac{1}{\left(3-a\right)^2}\)
\(\Leftrightarrow5\left(a^2+1\right)=\left(a-3\right)^2\)
\(\Leftrightarrow4a^2+6a-4=0\Rightarrow\left[{}\begin{matrix}a=\frac{1}{2}>0\left(l\right)\\a=-2\Rightarrow b=3-a=5\end{matrix}\right.\)
Pt đường thẳng: \(y=-2x+5\)
Câu 1:
Áp dụng BĐT Cauchy:
\(1+x^3+y^3\geq 3\sqrt[3]{x^3y^3}=3xy\)
\(\Rightarrow \frac{\sqrt{1+x^3+y^3}}{xy}\geq \frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Hoàn toàn tương tự:
\(\frac{\sqrt{1+y^3+z^3}}{yz}\geq \sqrt{\frac{3}{yz}}; \frac{\sqrt{1+z^3+x^3}}{xz}\geq \sqrt{\frac{3}{xz}}\)
Cộng theo vế các BĐT thu được:
\(\text{VT}\geq \sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\geq 3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\) (Cauchy)
Ta có đpcm
Dấu bằng xảy ra khi $x=y=z=1$
Câu 4:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{2}{x}+\frac{3}{y}\right)(x+y)\geq (\sqrt{2}+\sqrt{3})^2\)
\(\Leftrightarrow 1.(x+y)\geq (\sqrt{2}+\sqrt{3})^2\Rightarrow x+y\geq 5+2\sqrt{6}\)
Vậy \(A_{\min}=5+2\sqrt{6}\)
Dấu bằng xảy ra khi \(x=2+\sqrt{6}; y=3+\sqrt{6}\)
------------------------------
Áp dụng BĐT Cauchy:
\(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\geq 2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)
\(a^2+b^2\geq 2ab\Rightarrow \frac{3(a^2+b^2)}{4ab}\geq \frac{6ab}{4ab}=\frac{3}{2}\)
Cộng theo vế hai BĐT trên:
\(\Rightarrow B\geq 1+\frac{3}{2}=\frac{5}{2}\) hay \(B_{\min}=\frac{5}{2}\). Dấu bằng xảy ra khi $a=b$
Câu 1:
Phương trình hoành độ giao điểm của (P) và (d):
\(x^2-4x=-x-2\)
⇔ \(x^2-3x+2=0\)
⇔ \(\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Với x= 2 ⇒ y=-2 -2 = -4
Với x= 1 ⇒ y = -1 -2 = -3
Vậy chọn B: M( 1; -3) và N(2;-4)
Câu 2:
Vì (d) tiếp xúc với (P)
nên Δ = 0 ⇒ phương trình có một nghiệm kép
Vậy chọn D: y= -x +1
Câu 3:
(P) : y =\(x^2+4x+4\)
Để (P) có điểm chung với trục hoành ⇔ y =0
Vậy chọn B : 1
Câu 4:
Phương trình hoành độ giao điểm của hai parabol:
\(x^2-4=14-x^2\)
⇔ \(2x^2-18=0\)
⇔\(\left[{}\begin{matrix}x=3\Rightarrow y=14-3^2=5\\x=-3\Rightarrow y=14-\left(-3\right)^2=5\end{matrix}\right.\)
Vậy chọn C : (3;5) và (-3;5)
Câu 5: (P) : y= \(x^2-2x+m-1\)
Để (P) không cắt Ox
⇔ Δ < 0
⇔ \(b^2-4ac< 0\)
⇔ \(\left(-2\right)^2-4\left(m-1\right)< 0\)
⇔ 4 - 4m +4 < 0
⇔ -4m < -8
⇔ m > 2
Vậy chọn B : m> 2
b: Ox: y=0
=>0x+y+0=0
M thuộc Δ nên M(-2y+2;y)
\(d\left(M;\text{Δ}\right)=\dfrac{\left|\left(-2y+2\right)\cdot0+y\cdot1+0\right|}{\sqrt{0^2+1^2}}=\sqrt{2}\)
=>|y|=căn 2
=>y=căn 2 hoặc y=-căn 2
=>\(M\left(2-2\sqrt{2};\sqrt{2}\right)\) hoặc \(M\left(2+2\sqrt{2};-\sqrt{2}\right)\)
c: Oy: x=0
=>x+0y+0=0
x+2y-2=0
=>2y=-x+2
=>y=-0,5x+1
=>M(x;-0,5x+1)
d(M;Oy)=căn 3; M(x;-0,5x+1); x+0y+0=0(Oy)
=>\(\dfrac{\left|x\cdot1+\left(-0.5x+1\right)\cdot0+0\right|}{\sqrt{1^2+0^2}}=\sqrt{3}\)
=>\(\left|x\right|=\sqrt{3}\)
=>\(\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)
=>\(M\left(\sqrt{3};\dfrac{2-\sqrt{3}}{2}\right)\) hoặc \(M\left(-\sqrt{3};\dfrac{2+\sqrt{3}}{2}\right)\)