Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
wtf ý nào k làm dc thì up nên chứ up hết bài nên cho người ta làm hộ thì có học được cái j đâu
a) Tập xác định: D = R\{m}
Hàm số đồng biến trên từng khoảng (−∞;m),(m;+∞)(−∞;m),(m;+∞)khi và chỉ khi:
y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2
b) Tập xác định: D = R\{m}
Hàm số nghịch biến trên từng khoảng khi và chỉ khi:
y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0
[m<1m>4[m<1m>4
c) Tập xác định: D = R
Hàm số nghịch biến trên R khi và chỉ khi:
y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3
d) Tập xác định: D = R
Hàm số đồng biến trên R khi và chỉ khi:
y′=3x2−4mx+12≥0⇔′=4m2−36≤0⇔m2≤9⇔−3≤m≤3
y'=\(\dfrac{m\left(3x-m+1\right)-\left(mx+5\right)\cdot3}{\left(3x-m+1\right)^2}=\dfrac{-m^2+m-15}{\left(3x-m+1\right)^2}\)
Để y đồng biến trên R thì y'\(\ge\)0 <=>-m2+m-15\(\ge\)0(do mẫu luôn lớn hơn hoặc bằng 0
Mà
-m2+m-15\(=-\dfrac{59}{4}-\left(m-\dfrac{1}{2}\right)^2< 0\)với mọi m
=>không tồn tại m để y luôn đồng biến
Bài 1:
Hàm đồng biến khi mà \(y'=x^2-2mx-2\geq 0\forall x\in\mathbb{R}\)
\(\Leftrightarrow \Delta'=m^2+2\leq 0\). Điều này vô lý nên không tồn tại $m$ thỏa mãn
Bài 2:
Hàm đồng biến khi mà \(y'=-\frac{4x^2+4x+3+2m}{(2x+1)^2}\geq 0\) với mọi $x$ thuộc TXĐ
\(\Leftrightarrow 4x^2+4x+3+2m\leq 0\forall x\in\mathbb{R}\setminus \frac{-1}{2}\)
\(\Leftrightarrow m\leq -2(x^2+2x+1,5)\Leftrightarrow m\leq \min (-2x^2-2x-1,5)\)
Điều này vô lý vì không tồn tại min của \(-2x^2-2x-1,5\forall x\in\mathbb{R}\setminus\frac{-1}{2}\)
Vậy không tồn tại $m$ thỏa mãn.
Đặt \(cotx=t\Rightarrow\) khi x chạy từ \(\dfrac{\pi}{4}\rightarrow\dfrac{\pi}{2}\) thì \(t\) chạy từ 1 về 0
Do đó, nếu \(f\left(x\right)\) đồng biến thì \(f\left(t\right)=\dfrac{2t+1}{t+m}\) nghịch biến trên \(\left(0;1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2m-1< 0\\\left[{}\begin{matrix}-m< 0\\-m>1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{2}\\\left[{}\begin{matrix}m>0\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0< m< \dfrac{1}{2}\\m< -1\end{matrix}\right.\)
Hàm \(f\left(t\right)\) là hàm bậc nhất trên bậc nhất nên nó nghịch biến khi ad-bc<0
Hơn nữa, 1 điều cần rất chú ý trong loại toán tìm khoảng (a;b) nghịch biến cho hàm bậc nhất trên bậc nhất là là nghiệm của phương trình "mẫu thức = 0" cần né khoảng này ra. Ví dụ, để hàm \(f\left(t\right)\) đồng biến trên (0;1) thì trước hết nó phải liên tục, ko bị gián đoạn trên đoạn này
Mà pt mẫu \(t+m=0\) có nghiệm \(t=-m\)
Nên \(-m\) phải nằm ngoài khoảng \(\left(0;1\right)\) tức \(-m< 0\) hoặc \(-m>1\)
Bạn hiểu chưa ạ?