K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phương trình hoành độ giao điểm là:

\(-x^4-mx^2+m-1=0\)

\(\Leftrightarrow x^4+mx^2-m+1=0\)(1)

Đặt \(x^2=a\left(a>=0\right)\)

Phương trình trở thành: \(a^2+ma-m+1=0\)(2)

Để phương trình (1) có 4 nghiệm phân biệt thì phương trình (2) có hai nghiệm dưong

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4\cdot1\cdot\left(-m+1\right)>0\\-m>0\\-m+1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+4m-4< 0\\m< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m+2\right)^2< 8\\m< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{2}-2< m< 2\sqrt{2}-2\\m< 0\end{matrix}\right.\Leftrightarrow-2\sqrt{2}-2< m< 0\)

27 tháng 8 2020

Ko có cách xét phương trình hoành độ giao điểm ạ ah

NV
26 tháng 8 2020

- Với \(m=0\) ko thỏa mãn

- Với \(m\ne0\) đồ thị hàm số cắt \(y=3\) tại duy nhất 1 điểm khi và chỉ khi:

\(\left\{{}\begin{matrix}-m\left(m+2\right)\ge0\\y\left(0\right)=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-2\le m< 0\\2m^2-m-3=0\end{matrix}\right.\)

\(\Leftrightarrow m=-1\)

2 tháng 9 2016

pthdgd: x3-3mx2+(m+1)x+1=-x+1<=>x3-3mx2+(m+1)x+x=0<=>x(x2-3mx+m-1+1)<=>x=0 va x2-3mx+m=0(*). de y cat (c) tai 3 diem pbiet thi (*) fai co 2 nghiem pbiet # 0<=>Δ>0. giai Δ va ket hop vs dieu kiem tim ra m

AH
Akai Haruma
Giáo viên
8 tháng 10 2017

Lời giải:

PT hoành độ giao điểm:

\(x^3-3x^2-mx=0\)

\(\Leftrightarrow x(x^2-3x-m)=0\)

Ta thấy PT trên có một nghiệm \(x=0\) (không phải số dương). Như vậy, để 2 ĐTHS cắt nhau tại 3 điểm phân biệt mà rong đó có hai điểm có hoành độ dương thì PT $x^2-3x-m=0$ phải có hai nghiệm dương.

Trước tiên, để PT có hai nghiệm phân biệt thì \(\Delta=9+4m>0\Leftrightarrow m>\frac{-9}{4}\) (1)

Áp dụng hệ thức Viete, để hai nghiệm của PT dương thì:

\(\left\{\begin{matrix} x_1+x_2=3>0\\ x_1x_2=-m>0\end{matrix}\right.\Leftrightarrow m< 0\) (2)

Từ \((1),(2)\Rightarrow \frac{-9}{4} < m< 0\)

11 tháng 7 2016

TXD D=R

y'=3x^2-2mx+m-2/3.

nếu hs đạt cực tiểu tại x=1 thì y'(1)=0

<=>3-2m+m-2/3=0<=>m=7/3

khi m=7/3 thì y'=3x^2-14/3x+5/3=0     y''=6x-14/3

ta có y'=0<=>x=1 hoặc x=5/9 =>y''(1)=6-14/3=4/3 >0

vậy tại m=7/3  là điểm cực tiểu tại x=1

 

 

 

3 tháng 3 2019

Phương trình hoành độ giao điểm là

\(x^4-3\left(m+2\right)x^2+3m=-1\)

Đặt \(t=x^2\left(t\ge0\right)\), phương trình trở thành

\(t^2-3\left(m+2\right)t+1=0\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}t=1\\t=3m+1\end{matrix}\right.\)

Yêu cầu của bài toán tương đương

\(\left\{{}\begin{matrix}0< 3m+1< 4\\3m+1\ne1\end{matrix}\right.\)\(\Leftrightarrow-\dfrac{1}{3}< m< 1,m\ne0\)

18 tháng 10 2021

cho em hỏi đoạn yêu cầu bài toán với ạ