Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Với \(m=0\) ko thỏa mãn
- Với \(m\ne0\) đồ thị hàm số cắt \(y=3\) tại duy nhất 1 điểm khi và chỉ khi:
\(\left\{{}\begin{matrix}-m\left(m+2\right)\ge0\\y\left(0\right)=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-2\le m< 0\\2m^2-m-3=0\end{matrix}\right.\)
\(\Leftrightarrow m=-1\)
Lời giải:
PT hoành độ giao điểm:
\(x^3-3x^2-mx=0\)
\(\Leftrightarrow x(x^2-3x-m)=0\)
Ta thấy PT trên có một nghiệm \(x=0\) (không phải số dương). Như vậy, để 2 ĐTHS cắt nhau tại 3 điểm phân biệt mà rong đó có hai điểm có hoành độ dương thì PT $x^2-3x-m=0$ phải có hai nghiệm dương.
Trước tiên, để PT có hai nghiệm phân biệt thì \(\Delta=9+4m>0\Leftrightarrow m>\frac{-9}{4}\) (1)
Áp dụng hệ thức Viete, để hai nghiệm của PT dương thì:
\(\left\{\begin{matrix} x_1+x_2=3>0\\ x_1x_2=-m>0\end{matrix}\right.\Leftrightarrow m< 0\) (2)
Từ \((1),(2)\Rightarrow \frac{-9}{4} < m< 0\)
TXD D=R
y'=3x^2-2mx+m-2/3.
nếu hs đạt cực tiểu tại x=1 thì y'(1)=0
<=>3-2m+m-2/3=0<=>m=7/3
khi m=7/3 thì y'=3x^2-14/3x+5/3=0 y''=6x-14/3
ta có y'=0<=>x=1 hoặc x=5/9 =>y''(1)=6-14/3=4/3 >0
vậy tại m=7/3 là điểm cực tiểu tại x=1
Phương trình hoành độ giao điểm là
\(x^4-3\left(m+2\right)x^2+3m=-1\)
Đặt \(t=x^2\left(t\ge0\right)\), phương trình trở thành
\(t^2-3\left(m+2\right)t+1=0\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}t=1\\t=3m+1\end{matrix}\right.\)
Yêu cầu của bài toán tương đương
\(\left\{{}\begin{matrix}0< 3m+1< 4\\3m+1\ne1\end{matrix}\right.\)\(\Leftrightarrow-\dfrac{1}{3}< m< 1,m\ne0\)
Phương trình hoành độ giao điểm là:
\(-x^4-mx^2+m-1=0\)
\(\Leftrightarrow x^4+mx^2-m+1=0\)(1)
Đặt \(x^2=a\left(a>=0\right)\)
Phương trình trở thành: \(a^2+ma-m+1=0\)(2)
Để phương trình (1) có 4 nghiệm phân biệt thì phương trình (2) có hai nghiệm dưong
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4\cdot1\cdot\left(-m+1\right)>0\\-m>0\\-m+1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+4m-4< 0\\m< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m+2\right)^2< 8\\m< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{2}-2< m< 2\sqrt{2}-2\\m< 0\end{matrix}\right.\Leftrightarrow-2\sqrt{2}-2< m< 0\)