K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2020

Để phương trình có 2 nghiệm phân biệt :

\(\Delta>0< =>\left(-2\right)^2-4\left(-m\right)>0\)

\(< =>4+4m>0\)

\(< =>4m>-4\)

\(< =>m>-1\)

AH
Akai Haruma
Giáo viên
26 tháng 11 2017

Lời giải:

Để pt \(x^2-2(m-1)x+m^2-2m=0\) có hai nghiệm thì:

\(\Delta'=(m-1)^2-(m^2-2m)>0\Leftrightarrow 1>0\) (luôn đúng với mọi m)

Khi đó áp dụng hệ thức Viete với $x_1,x_2$ là hai nghiệm của phương trình thì:

\(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=m^2-2m\end{matrix}\right.\)

\(\Rightarrow (x_1+x_2)^2-2x_1x_2=4(m-1)^2-2(m^2-2m)\)

\(\Leftrightarrow x_1^2+x_2^2=2m^2-4m+4\)

\(\Leftrightarrow 8=2m^2-4m+4\Leftrightarrow m^2-2m-2=0\)

\(\Leftrightarrow m=1\pm \sqrt{3}\)

NV
12 tháng 11 2019

Để pt có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\Rightarrow m^2-3< 0\Rightarrow-\sqrt{3}< m< \sqrt{3}\)

\(\Delta=m^2-4\left(m^2-3\right)=12-3m^2\ge0\Rightarrow m^2\le4\)

Khi đó theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m^2-3\end{matrix}\right.\)

\(\Rightarrow A=\left|x_1^2+x_2^2-x_1x_2\right|=\left|\left(x_1+x_2\right)^2-3x_1x_2\right|\)

\(A=\left|m^2-3\left(m^2-3\right)\right|=\left|9-2m^2\right|=9-2m^2\le9\)

\(\Rightarrow A_{max}=9\) khi \(m=0\)

NV
20 tháng 11 2018

\(\left\{{}\begin{matrix}m\ne0\\\Delta'>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m< 1\end{matrix}\right.\)

Khi đó \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+2}{m}\\x_1x_2=\dfrac{m+3}{m}\end{matrix}\right.\)

\(x_1^3+x_2^3-2\left(x_1+x_2\right)=0\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)-2\left(x_1+x_2\right)=0\)

\(\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2-2\right)=0\)

TH1: \(x_1+x_2=0\Leftrightarrow\dfrac{2\left(m+1\right)}{m}=0\Rightarrow m=-1\)

TH2: \(\left(x_1+x_2\right)^2-3x_1x_2-2=0\Leftrightarrow\left(\dfrac{2m+2}{m}\right)^2-\dfrac{3m+9}{m}-2=0\)

\(\Leftrightarrow m^2+m-4=0\Rightarrow\left[{}\begin{matrix}m=\dfrac{-1-\sqrt{17}}{2}\\m=\dfrac{-1+\sqrt{17}}{2}\left(l\right)\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}m=-1\\m=\dfrac{-1-\sqrt{17}}{2}\end{matrix}\right.\)

NV
10 tháng 6 2020

Để pt có 2 nghiệm khác 0:

\(\left\{{}\begin{matrix}m-1\ne0\\\Delta'=m^2-\left(m-1\right)\left(m+1\right)\ge0\\x_1x_2=\frac{m+1}{m-1}\ne0\end{matrix}\right.\) \(\Rightarrow m\ne\pm1\)

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}>-\frac{5}{2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}+\frac{5}{2}>0\)

\(\Leftrightarrow\frac{2\left(x_1+x_2\right)^2+x_1x_2}{2x_1x_2}>0\)

\(\Leftrightarrow\frac{8\left(\frac{m}{m-1}\right)^2+\frac{m+1}{m-1}}{\frac{2\left(m+1\right)}{m-1}}>0\Leftrightarrow\frac{\frac{8m^2}{m-1}+m+1}{2\left(m+1\right)}>0\)

\(\Leftrightarrow\frac{9m^2-1}{2\left(m-1\right)\left(m+1\right)}>0\Leftrightarrow\frac{\left(3m-1\right)\left(3m+1\right)}{2\left(m-1\right)\left(m+1\right)}>0\)

\(\Rightarrow\left[{}\begin{matrix}m< -1\\-\frac{1}{3}< m< \frac{1}{3}\\m>1\end{matrix}\right.\)

20 tháng 12 2022

Câu 1:
ĐKXĐ: x>=3

\(PT\Leftrightarrow\sqrt{x-3}=2x-m\)

=>x-3=(2x-m)^2

=>4x^2-4xm+m^2=x-3

=>4x^2-x(4m-1)+m^2+3=0

Δ=(4m-1)^2-4*4*(m^2+3)

=16m^2-8m+1-16m^2-48

=-8m-47

Để phương trình có nghiệm thì -8m-47>=0

=>m<=-47/8