K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 11 2020

Lời giải:
ĐK:

$1\leq x\leq 2$

$2m+x+x^2\geq 0$

PT $Leftrightarrow -x^2+3x-2=2m+x+x^2$

$\Leftrightarrow m=-x^2+x-1$

Để PT có nghiệm thì $\min (-x^2+x-1)\leq m\leq max (-x^2+x-1)$ với $1\leq x\leq 2$

Với $1\leq x\leq 2$ dễ thấy:

$(-x^2+x-1)_{\max}=-1$ tại $x=1$

$(-x^2+x-1)_{\min}=-3$ tại $x=2$

Do đó: $-3\leq m\leq -1$

NV
9 tháng 11 2019

ĐKXĐ: \(1\le x\le2\)

\(-x^2+3x-2=2m+x-x^2\)

\(\Rightarrow x=m+1\)

\(\Rightarrow1\le m+1\le2\)

\(\Rightarrow0\le m\le1\)

29 tháng 7 2016

a) \(x+\sqrt{3x^2+1}=m\)

<=> \(\sqrt{3x^2+1}=m-x\)

ta thẩ : \(\sqrt{3x^2+1}\ge0\)=> \(m-x\ge0\)

<=> \(m\ge x\)

NV
9 tháng 11 2019

ĐKXĐ: \(1\le x\le2\)

\(-x^2+3x-2=2m+x-x^2\)

\(\Leftrightarrow2x=2m+2\)

\(\Rightarrow x=m+1\)

\(\Rightarrow1\le m+1\le2\)

\(\Rightarrow0\le m\le1\)

NV
3 tháng 11 2019

\(\Leftrightarrow x^2+1+3\sqrt{x^2+1}+2m-1=0\) (1)

Đặt \(\sqrt{x^2+1}=t\Rightarrow t\ge1\)

Phương trình trở thành: \(t^2+3t+2m-1=0\) (2)

Để (1) có nghiệm khi và chỉ khi (2) có ít nhất 1 nghiệm thỏa mãn \(t\ge1\)

\(\left(2\right)\Leftrightarrow t^2+3t-1=-2m\)

Xét \(f\left(t\right)=t^2+3t-1\) có đồ thị như dưới với \(f\left(1\right)=3\):

Hỏi đáp Toán

Để pt có ít nhất 1 nghiệm \(t\ge1\Leftrightarrow-2m\ge3\Rightarrow m\le-\frac{3}{2}\)