K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2021

a, \(\sqrt{2x^2-2x+m}=x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2x+m=x^2+2x+1\\x+1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x+m-1=0\left(1\right)\\x\ge-1\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có nghiệm \(x\ge-1\) chỉ có thể xảy ra các trường hợp sau

TH1: \(x_1\ge x_2\ge-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'\ge0\\\dfrac{x_1+x_2}{2}\ge-1\\1.f\left(-1\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\2\ge-1\\m+4\ge0\end{matrix}\right.\)

\(\Leftrightarrow-4\le m\le5\)

TH2: \(x_1\ge-1>x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\m+4< 0\end{matrix}\right.\)

\(\Rightarrow\) vô nghiệm

Vậy \(-4\le m\le5\)

28 tháng 8 2021

hello

NV
3 tháng 11 2021

\(\Leftrightarrow4\left|x^2-x-m\right|=4\left(2x-1\right)\)

\(\Leftrightarrow\left|\left(2x-1\right)^2-4m-1\right|=4\left(2x-1\right)\)

Đặt \(2x-1=t\), với mỗi nghiệm t sẽ cho đúng 1 nghiệm x tương ứng

\(\Rightarrow\left|t^2-4m-1\right|=4t\) (\(t\ge0\))

\(\Rightarrow\left(t^2-4m-1\right)^2=16t^2\) (1)

Đặt \(t^2=a\ge0\) , với mỗi nghiệm \(a\ge0\) sẽ cho đúng 1 nghiệm t không âm tương ứng, đồng nghĩa cho đúng 1 nghiệm x tương ứng

(1) \(\Rightarrow\left(a-4m-1\right)^2=16a\) (2)

Do 2 là pt bậc 2 nên chỉ có tối đa 2 nghiệm

\(\Rightarrow\) Phương trình đã cho có tối đa 2 nghiệm

\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu

NV
15 tháng 12 2020

ĐKXĐ: \(x\ge0\)

\(\left(x^2-x-m\right)\sqrt{x}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)

Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm

Do đó:

a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm 

\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)

b. Để pt có 2 nghiệm pb 

TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0

\(\Leftrightarrow m=0\)

TH2: (1) có 2 nghiệm trái dấu

\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)

\(\Rightarrow m\ge0\)

c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)

NV
23 tháng 11 2021

\(\Leftrightarrow\left(x^2-2x+5\right)\left(x^2-2x-3\right)=m\)

Đặt \(x^2-2x-3=t\) (1)

(1) có 2 nghiệm x phân biệt khi \(\Delta'=1-\left(-3-t\right)>0\Rightarrow t>-4\)

Khi đó pt đã cho trở thành:

\(\left(t+8\right)t=m\)

\(\Leftrightarrow t^2+8t=m\) (2)

Do (2) là pt bậc 2 có tối đa 2 nghiệm nên pt đã cho có 4 nghiệm pb khi và chỉ khi (2) có 2 nghiệm pb đều lớn hơn -4

Từ đồ thị \(f\left(t\right)=t^2+8t\) ta thấy ko tồn tại m thỏa mãn

15 tháng 10 2020

\(-x^2+2x+m-1=0\Leftrightarrow x^2-2x-m+1=0\)

Để phương trình có hai nghiệm phân biệt \(\Leftrightarrow\Delta^'=\left(-1\right)^2-\left(-m+1\right).1=m\ge0\)

Vậy \(m\ge0\)

29 tháng 12 2020

Đặt x2 + 2x + 4 = t . Điều kiện : t ≥ 3 

Phương trình đã cho trở thành t2 - 2mt - 1 = 0 (1)

(1) là phương trình hoành độ giao điểm của đồ thị hàm số y = t2 - 2mt - 1 với trục Ox (tức đường thẳng y = 0). Yêu cầu bài toán thỏa mãn khi (1) có 2 nghiệm phân biệt t thỏa mãn t ≥ 3 

Ta có bảng biến thiên của hàm số y = t2 - 2mt - 1 

t f(t) +∞ +∞ -∞ +∞ m -m - 1 2 3 y = 0 3 y = 0 8-6m 8-6m Nếu m > 3 thì yêu cầu bài toán thỏa mãn khi 

8 - 6m ≥ 0 ⇔ m ≤ \(\dfrac{4}{3}\) (không thỏa mãn m > 3)

Nếu m < 3, yêu cầu bài toán thỏa mãn khi 

8 - 6t ≤ 0 ⇔ m ≥ \(\dfrac{4}{3}\) Vậy m ∈ \(\)[\(\dfrac{4}{3};3\))

Nếu m = 3 thì phương trình trở thành 

t2 - 6t - 1 = 0 có 2 nghiệm thỏa mãn \(\left\{{}\begin{matrix}t_1+t_2=6\\t_1.t_2=-1\end{matrix}\right.\)

tức phương trình có 2 nghiệm trái dấu (không thỏa mãn điều kiện 2 nghiệm t ≥ 3) nên m = 3 không thỏa mãn yêu cầu bài toán 

Vậy tập hợp các giá trị m thỏa mãn yêu cầu bài toán là M = \(\left\{m\in R;\dfrac{4}{3}\le m< 3\right\}\)

30 tháng 11 2022

Bài 3:

a: Để pt có hai nghiệm trái dấu thì m+5<0

=>m<-5

b: \(\text{Δ}=\left(m+2\right)^2-4\left(m+5\right)\)

\(=m^2+4m+4-4m-20=m^2-16\)

Để phương trình có hai nghiệm phân biệt thì m^2-16>0

=>m>4 hoặc m<-4

c: x1^2+x2^2=23

=>(x1+x2)^2-2x1x2=23

=>(m+2)^2-2(m+5)=23

=>m^2+4m+4-2m-10-23=0

=>m^2+2m-29=0

hay \(m=-1\pm\sqrt{30}\)

d: Để pt có hai nghiệm âm phân biệt thì

\(\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\m+2< 0\\m+5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\-5< m< -2\end{matrix}\right.\Leftrightarrow m\in[-4;-2)\)