\(x^3-\left(m+1\right)x^2-\left(2m^2-3m+2\right)x+2m\left...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020
https://i.imgur.com/4dcXB7k.jpg
25 tháng 3 2020
https://i.imgur.com/GdAwkG3.jpg
7 tháng 12 2017

Hỏi đáp Toán

7 tháng 12 2017

câu b tương tự

câu c chia 2 thợp :th1 m=0

TH2 m≠0 rồi cứ triển thôi

5 tháng 4 2017

a)

Làm từng cái

(1)để có hai nghiệm: \(m^2+m+1\ne0\) ta có

\(m^2+m+1=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall m\)đúng với \(\forall m\)

(2) \(\Delta>0\Rightarrow\left(2m-3\right)^2-4\left(m-5\right)\left(m^2+m+1\right)>0\)

{để đó tý giải quyết sau }

(3) tích hai nghiệm phải dương

\(\Rightarrow x_1x_2=\dfrac{c}{a}>0\Rightarrow m-5>0\Rightarrow m>5\)

(4) tổng hai nghiệm phải dương

\(\Rightarrow-\dfrac{b}{a}>0\Rightarrow2m-3< 0\Rightarrow m< \dfrac{3}{2}\)

từ (3) (4) => không có m thỏa mãn => kết luận vô nghiệm

 

 

5 tháng 4 2017

câu b)

có vẻ nhàn hơn

(1) \(\Delta'>0\Rightarrow9m^2-9m^2+2m-2=2m-2>0\Rightarrow m>1\)

(2)\(-\dfrac{b}{a}>0\Rightarrow m>0\)

(3) \(\dfrac{c}{a}>0\Rightarrow9m^2-2m+2>0\) đúng vơi mọi m

(1)(2)(3) nghiệm là: m>1

1 tháng 3 2019

\(a)\left(1+m\right)x^2-2mx+2m=0\\ \Delta=\left(2m\right)^2-4\left(1+m\right).2m\\ =4m^2-8m^2-8m\\ =-4m^2-8m\)

Để phương trình có nghiệm \(\Delta\ge0\)

\(-4m^2-8m\ge0\\ \Leftrightarrow-4m\left(m+2\right)\ge0\\ m\left(m+2\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\le0\\m+2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}m\ge0\\m+2\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\le0\\m\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}m\ge0\\m\le-2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow-2\le m\le0\)

1 tháng 3 2019

\(b)\left(m-2\right)x^2+2\left(2m-3\right)x+5m-6=0\\ \Delta=\left(2m-3\right)^2-4\left(m-2\right)\left(5m-6\right)\\ =4m^2-12m+9-20m^2+64m-48\\ =-16m^2+52m-39\)

Để phương trình có nghiệm thì \(\Delta\ge0\)

\(-16m^2+52m-39\ge0\\ \Leftrightarrow m\in\left(\dfrac{13\pm\sqrt{13}}{8}\right)\)

Vậy...

16 tháng 2 2021

a, Phương trình có hai nghiệm trái dấu khi \(2\left(2m^2-3m-5\right)< 0\)

\(\Leftrightarrow\left(2m-5\right)\left(m+1\right)< 0\)

\(\Leftrightarrow-1< m< \dfrac{5}{2}\)

b, TH1: \(m^2-3m+2=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)

Phương trình đã cho có nghiệm duy nhất

TH2: \(m^2-3m+2\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne2\end{matrix}\right.\)

Phương trình có hai nghiệm trái dấu khi \(-5\left(m^2-3m+2\right)< 0\)

\(\Leftrightarrow m^2-3m+2>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\)

Vậy \(m>2\) hoặc \(m< 1\)

16 tháng 2 2021

c, Phương trình đã cho có hai nghiệm trái dấu \(x_1,x_2\) khi \(m^2-2m< 0\Leftrightarrow0< m< 2\)

Theo định lí Viet: \(x_1+x_2=2\left(m-1\right)\)

Yêu cầu bài toán thỏa mãn khi \(x_1+x_2< 0\Leftrightarrow2\left(m-1\right)< 0\Leftrightarrow m< 1\)

Vậy \(0< m< 1\)

NV
12 tháng 5 2019

\(\Delta=\left(2m+1\right)^2-4\left(m-2\right)\left(3m-3\right)=-8m^2+4m0-23\ge0\) ;\(m\ne2\)

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2m-1}{m-2}\\x_1x_2=\frac{3m-3}{m-2}\end{matrix}\right.\)

Do \(x_2\) là nghiệm nên: \(\left(m-2\right)x^2_2-\left(2m+1\right)x_2+3m-3=0\)

\(\Leftrightarrow\left(m-2\right)x_2^2=\left(2m+1\right)x_2-3m+3\)

Thay vào bài toán:

\(\left(2m+1\right)x_1+\left(2m+1\right)x_2-3m+3=m-1\)

\(\Leftrightarrow\left(2m+1\right)\left(x_1+x_2\right)=4m-4\)

\(\Leftrightarrow\frac{\left(2m+1\right)^2}{m-2}=4m-4\Leftrightarrow\left(2m+1\right)^2=\left(4m-4\right)\left(m-2\right)\)

\(\Leftrightarrow4m^2+4m+1=4m^2-12m+8\)

\(\Leftrightarrow16m=7\Rightarrow m=\frac{7}{16}\)

Bạn tự thay vào điều kiện \(\Delta\) kiểm tra xem có thỏa mãn không