Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để phương trình trên có hai nghiệm \(x_1,x_2\) thì trước tiên \(m\neq 0\)
\(\Delta'=1-2m>0\Leftrightarrow m<\frac{1}{2}\)
Áp dụng định lý Viete: \(x_1+x_2=\dfrac{2}{m}\). Mặt khác \(x_1+x_2=2m(m+1)\)
\(\Rightarrow \frac{2}{m}=2m(m+1)\Leftrightarrow m^3+m^2-1=0\) $(1)$
Giải PT trên, ta thấy nếu \(m\) là nghiệm $(1)$ thì \(m>\frac{1}{2}\), do đó không tồn tại $m$ thỏa mãn.
(x2-3x+2)(x2-9x+20)=4
=>(x-1)(x-2)(x-4)(x-5)=4
Đặt x-3=a , phương trình tương đương:
(a+2)(a+1)(a-1)(a-2)=4
=>(a2-1)(a2-4)=4
=>a4-5a2=0
Tự giải nốt nhé!
\(\Delta'=\left(m-1\right)^2-m^2+3m=m+1\ge0\Rightarrow m\ge-1\)
Khi đó theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-3m\end{matrix}\right.\)
\(x_1^2+x_2^2=8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-8=0\)
\(\Leftrightarrow4\left(m-1\right)^2-2\left(m^2-3m\right)-8=0\)
\(\Leftrightarrow2m^2-2m-4=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=2\end{matrix}\right.\)
\(\Delta'=\left(m+2\right)^2-3m-10=m^2+m-6\ge0\) \(\Rightarrow\left[{}\begin{matrix}m\le-3\\m\ge2\end{matrix}\right.\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+2\right)\\x_1x_2=3m+10\end{matrix}\right.\)
\(\left|x_1-x_2\right|\le4\)
\(\Leftrightarrow\left(x_1-x_2\right)^2\le16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-16\le0\)
\(\Leftrightarrow4\left(m+2\right)^2-4\left(3m+10\right)-16\le0\)
\(\Leftrightarrow m^2+m-10\le0\) \(\Rightarrow\frac{-1-\sqrt{41}}{2}\le m\le\frac{-1+\sqrt{41}}{2}\)
Vậy \(\left[{}\begin{matrix}\frac{-1-\sqrt{41}}{2}\le m\le-3\\2\le m\le\frac{-1+\sqrt{41}}{2}\end{matrix}\right.\)
△=[-2(1-m)]2-4(m2+3)
=4-8m+4m2-4m2-12
=-8-8m
De phuong trinh co 2 nghiem x1,x2 thì :△>=0
=>-8-8m≥0 =>m≤-1
Theo Viet {x1+x2=2-2m ;x1x2=m2+3
=> A=2(2-2m)-m2-3
=4-4m-m2-3
=-m2-4m+1 =-(m2+4m-1)
=-[(m+2)2-5] =-(m+2)2+5
Vì (m+2)2≥0∀m =>-(m+2)2≤0
=>-(m+2)2+5≤5
Vậy GTLN của A là 5 khi m=-2
a/ \(\Delta'=1-m\ge0\Rightarrow m\le1\)
Để biểu thức xác định \(\Rightarrow f\left(0\right)\ne0\Rightarrow m\ne0\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m\end{matrix}\right.\)
Mặt khác do \(x_1;x_2\) là nghiệm của pt nên:
\(\left\{{}\begin{matrix}x_1^2-2x_1+m=0\\x_2^2-2x_1+m=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1^2-3x_1+m=-x_1\\x_2^2-3x_2+m=-x_2\end{matrix}\right.\)
Thay vào ta được:
\(-\frac{x_1}{x_2}-\frac{x_2}{x_1}\le2\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}+2\ge0\)
\(\Leftrightarrow\frac{x_1^2+x_2^2+2x_1x_2}{x_1x_2}\ge0\Leftrightarrow\frac{\left(x_1+x_2\right)^2}{x_1x_2}\ge0\)
\(\Leftrightarrow\frac{4}{m}\ge0\Rightarrow m>0\)
Vậy \(0< m\le1\)
b/ \(\Delta'=m^2-m-2\ge0\Rightarrow\left[{}\begin{matrix}m\ge2\\m\le-1\end{matrix}\right.\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m+2\end{matrix}\right.\)
\(x_1^3+x_2^3\le16\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-16\le0\)
\(\Leftrightarrow8m^3-6m\left(m+2\right)-16\le0\)
\(\Leftrightarrow4m^3-3m^2-6m-8\le0\)
\(\Leftrightarrow\left(m-2\right)\left(4m^2+5m+4\right)\le0\)
\(\Leftrightarrow m\le2\) (do \(4m^2+5m+4=4\left(m+\frac{5}{8}\right)^2+\frac{39}{16}>0;\forall m\))
Kết hợp ta được \(\left[{}\begin{matrix}m=2\\m\le-1\end{matrix}\right.\)
Đề như vậy hả bạn? Tìm m để pt có 2 nghiệm (có phân biệt hay không?) thỏa: \(x_1^2+2x_2\le3x_1x_2\)