Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét hệ : \(\hept{\begin{cases}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{cases}}\) <=> \(\hept{\begin{cases}\left(m-1\right)^2x+\left(m-1\right)y=\left(m-1\right)\left(3m-4\right)\\x+\left(m-1\right)y=m\end{cases}}\)
<=> \(\hept{\begin{cases}m\left(m-2\right)x=\left(m-2\right)\left(3m-2\right)\left(1\right)\\x+\left(m-1\right)y=m\end{cases}}\)
Hệ có vô số nghiệm <=> (1) có vô số nghiệm m - 2 = 0 <=> m = 2
Vậy m = 2 thì hệ đã cho có vô số nghiệm
b)
Xét hệ : \(\hept{\begin{cases}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{cases}}\) <=> \(\hept{\begin{cases}\left(m-1\right)^2x+\left(m-1\right)y=\left(m-1\right)\left(3m-4\right)\\x+\left(m-1\right)y=m\end{cases}}\)
<=> \(\hept{\begin{cases}m\left(m-2\right)x=\left(m-2\right)\left(3m-2\right)\left(1\right)\\x+\left(m-1\right)y=m\end{cases}}\)
Hệ đã cho có nghiệm duy nhất <=> (1) có nghiệm duy nhất m \(\ne\)0 và m \(\ne\)2
Khi đó hệ đã cho có nghiệm duy nhất \(\hept{\begin{cases}x=\frac{\left(m-2\right)\left(3m-2\right)}{m\left(m-2\right)}=\frac{3m-2}{m}\\y=\frac{m-2}{m}\end{cases}}\)
Ta có: x + y = 3 Hay \(\frac{3m-2}{m}+\frac{m-2}{m}=3\)
<=> \(\frac{4m-4}{m}=3\) <=> 4m - 4 = 3m <=> m = 4 (TM)
Vậy m = 4 thì thỏa mãn đề bài
Ôi trời nhiều thía ? làm từng câu một ha !
a \(\hept{\begin{cases}\left(x+5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy-2x+5y-10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-x+3y=8\\3x-y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y-3x+9y=16+24\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\8y=40\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=7\\y=5\end{cases}}\)
b, ĐKXĐ \(x\ne\pm y\)
Đặt \(\frac{1}{x+y}=a\) và \(\frac{1}{x-y}=b\)(a và b khác 0)
Ta có hệ \(\hept{\begin{cases}a-2b=2\\5a-4b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b-2a+4b=3-4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\3a=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-\frac{1}{3}\\b=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+y}=-\frac{1}{3}\\\frac{1}{x-y}=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=-3\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y-x+y=-3+\frac{6}{7}\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y=-\frac{15}{7}\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{27}{14}\\y=-\frac{15}{14}\end{cases}}\)
1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)
Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.