Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần sau em đăng trong link: h.vn để đc các bạn giúp đỡ nhé!
1. ĐK x >1
pt \(\Leftrightarrow\frac{1}{\sqrt{x}-\sqrt{x-1}}\left(m\sqrt{x}+\frac{1}{\sqrt{x-1}}-16\sqrt[4]{\frac{x^3}{x-1}}\right)=1\)
\(\Leftrightarrow m\sqrt{x}+\frac{1}{\sqrt{x-1}}-16\sqrt[4]{\frac{x^3}{x-1}}=\sqrt{x}-\sqrt{x-1}\)
\(\Leftrightarrow m\sqrt{x\left(x-1\right)}+1-16\sqrt[4]{x^3\left(x-1\right)}=\sqrt{x\left(x-1\right)}-x+1\)
\(\Leftrightarrow\left(m-1\right)\sqrt{x\left(x-1\right)}-16\sqrt[4]{x^3\left(x-1\right)}+x=0\)
\(\Leftrightarrow\left(m-1\right)\sqrt{\frac{x-1}{x}}-16\sqrt[4]{\frac{x-1}{x}}+1=0\)
Đặt rồi đưa về phương trình bậc 2: \(\left(m-1\right)t^2-16t+1=0\)
2. ĐK:...
\(\sqrt{x-4-2\sqrt{x-4}+1}+\sqrt{x-4-2.\sqrt{x-4}.3+9}=m\)
\(\Leftrightarrow\left|\sqrt{x-4}-1\right|+\left|\sqrt{x-4}-3\right|=m\)Tìm m để pt có đúng 2 nghiệm. Tự làm nhé!
\(3.\) ĐK:...
Đặt: \(\left(x^2-3x-4\right)=a\)
\(\sqrt{x+7}=b\)
Ta có: \(ab-m\left(a-b\right)-m^2=0\Leftrightarrow m^2+m\left(a-b\right)-ab=0\)
\(\Delta=\left(a-b\right)^2+4ab=\left(a+b\right)^2\)
pt có 2 nghiệm : \(\orbr{\begin{cases}m=\frac{b-a-\left(a+b\right)}{2}=-a\\m=\frac{b-a+\left(a+b\right)}{2}=b\end{cases}}\)
Khi đó: \(\orbr{\begin{cases}m=-\left(x^2-3x-4\right)\\m=\sqrt{x+7}\end{cases}}\)
pt <=> \(\left(m+x^2-3x-4\right)\left(m-\sqrt{x+7}\right)=0\)Tìm m để pt có nhiều nghiệm nhất .
Bài 1:
\(\Leftrightarrow4x^2-2x+3m-4=4x^2-20x+25\)
=>-2x+3m-4+20x-25=0
=>18x+3m-29=0
Để phương trình có nghiệm thì 5-2x>=0 và \(4x^2-2x+3m-4>=0\)
=>\(\left\{{}\begin{matrix}\left(-2\right)^2-4\cdot4\cdot\left(3m-4\right)< =0\\4>0\end{matrix}\right.\Leftrightarrow4-16\left(3m-4\right)< =0\)
=>4-48m+64<=0
=>-48m+68<=0
=>-48m<=-68
=>m>=17/12
Lời giải:
Có \(\sqrt{x+6\sqrt{x-9}}+m\sqrt{x+2\sqrt{x-9}-8}=x+\frac{3m+1}{2}\)
\(\Leftrightarrow \sqrt{(\sqrt{x-9}+3)^2}+m\sqrt{(\sqrt{x-9}+1)^2}=x+\frac{3m+1}{2}\)
\(\Leftrightarrow \sqrt{x-9}+3+m(\sqrt{x-9}+1)=x+\frac{3m+1}{2}\)
\(\sqrt{x-9}(m+1)=x+\frac{3m+1}{2}-m-3\)
\(\Leftrightarrow \sqrt{x-9}(m+1)=x+\frac{m-5}{2}\)
Đặt \(\sqrt{x-9}=t\) . Ta cần tìm m sao cho PT có hai nghiệm \(t_1,t_2| 0\leq t_1< 1< t_2\)
BPT tương đương:
\(t(m+1)=t^2+9+\frac{m-5}{2}\)
\(\Leftrightarrow 2t^2-2t(m+1)+(m+13)=0\)
Để PT có hai nghiệm thì; \(\Delta'=(m+1)^2-2(m+13)>0\)
\(\Leftrightarrow m^2-25>0\Leftrightarrow m>5\) hoặc \(m< -5\) (1)
Khi đó áp dụng hệ thức Viete:
\(\left\{\begin{matrix} t_1+t_2=m+1\\ t_1t_2=\frac{m+13}{2}\end{matrix}\right.\)
Để hai nghiệm thỏa mãn \(0\leq t_1< 1< t_2\Rightarrow \left\{\begin{matrix} t_1t_2\geq 0\\ (t_1-1)(t_2-1)< 0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m\geq -13\\ t_1t_2-(t_1+t_2)+1< 0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} m\geq -13\\ \frac{m+13}{2}-(m+1)+1< 0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m\geq -13\\ \frac{13-m}{2}< 0\end{matrix}\right.\Leftrightarrow m> 13\) (2)
Kết hợp (1); (2) suy ra $m\geq 13$
ĐKXĐ: \(x\ge0\)
\(\left(x^2-x-m\right)\sqrt{x}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)
Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm
Do đó:
a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm
\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)
b. Để pt có 2 nghiệm pb
TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0
\(\Leftrightarrow m=0\)
TH2: (1) có 2 nghiệm trái dấu
\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)
\(\Rightarrow m\ge0\)
c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)
Lời giải:
a) Đặt \(x^3=a\) thì pt trở thành:
\(a^2+2003a-2005=0\)
\(\Leftrightarrow (a+\frac{2003}{2})^2=2005+\frac{2003^2}{2^2}=\frac{4020029}{4}\)
\(\Rightarrow \left[\begin{matrix} a+\frac{2003}{2}=\sqrt{\frac{4020029}{4}}\\ a+\frac{2003}{2}=-\sqrt{\frac{4020029}{4}}\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} a=\sqrt{\frac{4020029}{4}}-\frac{2003}{2}\approx 1\\ a=-\sqrt{\frac{4020029}{4}}-\frac{2003}{2}\approx -2004\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=\sqrt[3]{a}\approx 1\\ x=\sqrt[3]{a}\approx \sqrt[3]{-2004}\end{matrix}\right.\)
b)
Đặt \(x^2=a(a\geq 0)\)
PT trở thành: \(\sqrt{2}a^2-2(\sqrt{2}+\sqrt{3})a+\sqrt{12}=0\)
\(\Delta'=(\sqrt{2}+\sqrt{3})^2-\sqrt{2}.\sqrt{12}=5\)
Theo công thức nghiệm của pt bậc 2 thì pt có 2 nghiệm:
\(\left\{\begin{matrix} a_1=\frac{(\sqrt{2}+\sqrt{3})+\sqrt{5}}{\sqrt{2}}\\ a_2=\frac{(\sqrt{2}+\sqrt{3})-\sqrt{5}}{\sqrt{2}}\end{matrix}\right.\)
Do đó \(x=\pm \sqrt{a}\in\left\{\pm \sqrt{\frac{\sqrt{2}+\sqrt{3}+\sqrt{5}}{\sqrt{2}}};\pm \sqrt{\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{\sqrt{2}}}\right\}\)
Câu 2:
Đặt \(x^2=a\). PT ban đầu trở thành:
\(a^2+a+m=0(*)\)
\(\bullet \)Để pt ban đầu có 3 nghiệm pb thì $(*)$ phải có một nghiệm $a=0$ và một nghiệm $a>0$
Để $a=0$ là nghiệm của $(*)$ thì \(0^2+0+m=0\Leftrightarrow m=0\)
Khi đó: \((*)\Leftrightarrow a^2+a=0\). Ta thấy nghiệm còn lại là $a=-1< 0$ (vô lý)
Do đó không tồn tại $m$ để pt ban đầu có 3 nghiệm pb.
\(\bullet\) Để pt ban đầu có 4 nghiệm pb thì $(*)$ phải có 2 nghiệm dương phân biệt
Mà theo định lý Viete, nếu $(*)$ có 2 nghiệm pb $a_1,a_2$ thì:\(a_1+a_2=-1< 0\) nên 2 nghiệm không thể đồng thời cùng dương.
Vậy không tồn tại $m$ để pt ban đầu có 4 nghiệm phân biệt.