K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

y=f(x)=x^3+(m+1)x^2+(m-12)x-12m=0

y'=F1(x)=3x^2+2(m+1)x+m-12

Để f(x)=0 có 3 nghiệm phân biệt thì F1(x)=0 có hai nghiệm phan biệt

=>(2m+2)^2-4*3*(m-12)>0

=>4m^2+8m+4-12m+144>0

=>4m^2-4m+148>0

=>m^2-m+37>0

=>(m-1/2)^2+36,75>0(luôn đúng)

4 tháng 3 2020

Bạn ơi xem và trả lời hộ bài của mình đi , mình cảm ơn !!!

4 tháng 3 2020

\(x^2-\left(m+3\right)x+3m=0\)

\(\Delta=\left(m+3\right)^2-4.1.3m=m^2+6m+9-12m\)

\(=m^2-9m+9=\left(m-3\right)^2\)

Để pt có 2 nghiệm phân biệt thì \(\left(m-3\right)^2>0\)

\(\Rightarrow m\ne3\)

20 tháng 12 2017

Tự Hỏi Tự Trả Lời

20 tháng 12 2017

[x² - 2mx - 4(m²+1)].[x² - 4x - 2m(m²+1)] = 0 (1) 
pt (1) tương đương với tuyển hai pt: 
[x² - 2mx - 4(m²+1) = 0 (*) 
[x² - 4x - 2m(m²+1) = 0 (**) 
- - - 
∆' (*) = m² + 4(m²+1) = 5m² + 1 > 0 với mọi m => (*) luôn có hai nghiệm phân biệt 
∆' (**) = 4 + 2m(m²+1) = 2(m+1)(m² - m + 2) 
Thấy m² - m + 2 = (m - 1/2)² + 7/4 > 0 với mọi m 
=> (**) có nghiệm khi và chỉ khi ∆'(**) ≥ 0 <=> m+1 ≥ 0 <=> m ≥ -1 
- - - 
Trước tiên ta xét trường hợp (*) và (**) có nghiệm chung khi đó ta có hệ: 
{x² - 2mx - 4(m²+1) = 0 (1*) 
{x² - 4x - 2m(m²+1) = 0 (2*) 
trừ vế ta được: (2m-4)x - 2m(m²+1) + 4(m²+1) = 0 
<=> (m-2)x - (m-2)(m²+1) = 0 
nếu m = 2, khi đó cả hai pt (1*) và (2*) thành x² - 4x - 20 = 0 
chứng tỏ (*) và (**) trùng nhau nên (1) chỉ có 2 nghiệm, không thỏa yêu cầu 
Vậy m # 2, từ trên => x = m²+1 ; thay vào (1*) ta có: (m²+1)² - 2m(m²+1) - 4(m²+1) = 0 
<=> m²+1 - 2m - 4 = 0 (do m²+1 > 0 ) <=> m² - 2m - 3 = 0 <=> m = -1 hoặc m = 3 
- - - các bước chhuẩn bị đã xong, giờ thì bắn thôi - - - 
(1) có 3 nghiệm phân biệt khi và chỉ khi (**) có nghiệm kép khác với hai nghiệm của (*), hoặc (**) có hai nghiệm pb trong đó có một nghiệm trùng với một nghiệm của (*) 
* TH1: (**) có nghiệm kép khi và chỉ khi m = -1 , nhưng khi đó 
(*) và (**) lại có nghiệm chung tức nghkép này đã bị trùng với nghiệm của (*) 
=> (1) có 2 nghiệm - không thỏa 
* TH2: (**) có hai nghiệm pbiệt, trong đó 1 nghiệm trùng với nghiệm của (*) 
=> ta phải có: m > -1 và m = -1 hoặc m = 3 => m = 3 

**Đảo lại khi m = 3: (*) có nghiệm là x = -4 ; x = 10; (**) có 
nghiệm là: x = -6 ; x = 10 
=> (1) có đúng 3 nghiệm là x = -6; x = -4 ; x = 10 

Tóm lại: ta chọn được m = 3 

Tk cho  mk, mk tk lại

4 tháng 3 2020

\(x^2-\left(3m+1\right)x+2m^2+3m-2=0\)

Ta có \(\Delta=\left(3m+1\right)^2-4.\left(2m^2+3m-2\right)\)

\(=9m^2+6m+1-8m^2-12m+8\)

\(=m^2-6m+9=\left(m-3\right)^2\)

Để pt có 2 nghiệm phân biệt thì \(\left(m-3\right)^2>0\)

hay m khác 3

Vậy m khác 3 thì pt có 2 nghiệm phân biệt

Thay x=3 vào pt,ta được:

3^2+(m^2-2m)*3-9+12m=0

=>3m^2-6m+12m=0

=>3m^2+6m=0

=>m=0 hoặc m=-2

20 tháng 3 2018

bài 1 câu a,b tự làm nhé " thay k=-3 vào là ra 

bài 1 câu c "

\(4x^2-25+k^2+4kx=0.\)

thay x=-2 vào ta được

\(16-25+k^2+-8k=0\)

\(-9+k^2-8k=0\Leftrightarrow k^2+k-9k-9=0\)

\(k\left(k+1\right)-9\left(k+1\right)=0\)

\(\left(k+1\right)\left(k-9\right)=0\)

vậy k=1 , 9 thì pt nhận x=-2

bài 2 xác đinh m ? đề ko có mờ đề phải là xác định a nếu là xác định a thì thay x=1 vào rồi tính là ra 

bài 3 cũng éo hiểu xác định a ? a ở đâu

1 là phải xác đinh m , nếu là xác đinh m thì thay x=-2 vào rồi làm

. kết luận của chúa Pain đề như ###

4 tháng 4 2017

???????

4 tháng 4 2017

ko hiểu