Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này đặt x^2=t(t>=0) rùi giải pt bậc 2 tìm 2 nghiệm phân biệt cùng dương là ra
Cho phương trình: x2−(m+4)x+4m=0
Tìm m để phương trình có 2 nghiệm phân biệt thỏa mãn x12 + (m+4)x2=0
\(a)\) Thay \(m=-1\) vào phương trình \(x^2+2\left(m-1\right)x+m^2=0\) ta được :
\(x^2+2\left(-1-1\right)x+\left(-1\right)^2=0\)
\(\Leftrightarrow\)\(x^2+2x.\left(-2\right)+1=0\)
\(\Leftrightarrow\)\(x^2-4x+1=0\)
\(\Leftrightarrow\)\(x^2-4x=-1\)
\(\Leftrightarrow\)\(x\left(x-4\right)=-1\)
Ta có bảng :
\(x\) | \(1\) | \(-1\) |
\(x-4\) | \(-1\) | \(1\) |
\(x\) | \(1\) ( loại ) | \(-1\) ( loại ) |
\(x\) | \(3\) ( loại ) | \(5\) ( loại ) |
Vậy khi \(m=-1\) thì không có giá trị của x thoã mãn phương trình
Chúc bạn học tốt ~
a) Thay m =\(-1\)vào PT ta có:
\(x^2-2\left(-1-1\right)x+\left(-1\right)^2=0\)
\(\Leftrightarrow x^2-4x+1=0\)
\(\Delta^,=2^2-1=3\)
Vậy PT có 2 nghiệm \(2+\sqrt{3},2-\sqrt{3}\)
b) PT có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta^,=\left(m-1\right)^2-m^2=-2m+1>0\Leftrightarrow m>\frac{1}{2}\)
Vậy khi m >\(\frac{1}{2}\),PT có 2 nghiệm phân biệt.