Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái này chỉ cần theo viet sau đó thay vào là ra thôi mà có cần biế đổi gì đâu
theo định lí vi ét: x1+x2=m
x1x2=m+1.
thay vào x1x2+2(x1+x2)-19=0, ta đc: m+1+2m-19=0=> m=18/3
\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)
Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)
=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)
Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)
Ta có \(\Delta'=\left(-m\right)^2-1\left(2m-1\right)\)
= \(m^2-2m+1=\left(m-1\right)^2\)
Phương trình có 2 nghiệm phân biệt x1,x2\(\Leftrightarrow\Delta'>0\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m\ne1\)
Áp dụng hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=2m-1\end{cases}}\)
Ta có \(\left|x_1-x_2\right|=16\Leftrightarrow\left(x_1-x_2\right)^2=256\)\(\Leftrightarrow x_1^2-2x_1x_2+x_2^2=256\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=256\)
ĐẾN ĐÂY THÌ BẠN THAY VÀO RỒI TỰ LÀM TIẾP NHÉ. HỌC TỐT
a, m=2
\(x^2-4x+3=0\)
=>\(\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
b, Phương trình có nghiệm
=> \(\Delta'\ge0\)
=> \(m^2-m^2+m-1\ge0\)=>\(m\ge1\)
Theo Vi-ét ta có
\(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{cases}}\)
Vì \(x_2\)là nghiệm của phương trình nên \(x^2_2-2mx_2+m^2-m+1=0\)=>\(2mx_2=x_2^2+m^2-m+1\)
Khi đó
\(\left(x_1^2+x_2^2\right)-3x_1x_2-3+m^2-m+1=0\)
=>\(\left(x_1+x_2\right)^2-5x_1x_2+m^2-m-2=0\)
=> \(4m^2-5\left(m^2-m+1\right)+m^2-m-2=0\)
=> \(m=\frac{7}{4}\)( thỏa mãn \(m\ge1\)
Vậy \(m=\frac{7}{4}\)
Pương trình trên có 2 nghiệm khi và chỉ khi:\(\Delta\ge0\)
<=> \(m^2-4m\ge0\Leftrightarrow m\left(m-4\right)\ge0\Leftrightarrow\orbr{\begin{cases}m\le0\\m\ge4\end{cases}}\)(*)
Với điều kiện (*) Áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1+x_2=-m\\x_1.x_2=m\end{cases}}\)
Xét \(\left|x_1-x_2\right|=2\Leftrightarrow\left(x_1-x_2\right)^2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)
Từ đó ta có phương trình ẩn m:
\(\left(-m\right)^2-4m=4\Leftrightarrow m^2-4m-4=0\)\(\Leftrightarrow\orbr{\begin{cases}m=2+\sqrt{2}\\m=2-\sqrt{2}\end{cases}}\)( thỏa mãn *)
vậy:,...