\(^{x^2+mx+m=0}\)

có hai nghiệm x1;x2 thỏa mãn |x1-x2|=2

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2019

Pương trình trên có 2 nghiệm  khi và chỉ khi:\(\Delta\ge0\)

<=> \(m^2-4m\ge0\Leftrightarrow m\left(m-4\right)\ge0\Leftrightarrow\orbr{\begin{cases}m\le0\\m\ge4\end{cases}}\)(*)

Với điều kiện (*) Áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1+x_2=-m\\x_1.x_2=m\end{cases}}\)

Xét \(\left|x_1-x_2\right|=2\Leftrightarrow\left(x_1-x_2\right)^2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)

Từ đó ta có phương trình ẩn m:

\(\left(-m\right)^2-4m=4\Leftrightarrow m^2-4m-4=0\)\(\Leftrightarrow\orbr{\begin{cases}m=2+\sqrt{2}\\m=2-\sqrt{2}\end{cases}}\)( thỏa mãn *)

vậy:,...

31 tháng 1 2016

cái này chỉ cần theo viet sau đó thay vào là ra thôi mà có cần biế đổi gì đâu

31 tháng 1 2016

theo định lí vi ét: x1+x2=m

 x1x2=m+1.

thay vào x1x2+2(x1+x2)-19=0, ta đc: m+1+2m-19=0=> m=18/3

14 tháng 1 2018

viet dc k bạn

2 tháng 4 2018

\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)

Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)

=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)

Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)

12 tháng 2 2020

Ta có \(\Delta'=\left(-m\right)^2-1\left(2m-1\right)\)

                = \(m^2-2m+1=\left(m-1\right)^2\)

Phương trình có 2 nghiệm phân biệt x1,x2\(\Leftrightarrow\Delta'>0\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m\ne1\)

Áp dụng hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=2m-1\end{cases}}\)

Ta có \(\left|x_1-x_2\right|=16\Leftrightarrow\left(x_1-x_2\right)^2=256\)\(\Leftrightarrow x_1^2-2x_1x_2+x_2^2=256\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=256\)

ĐẾN ĐÂY THÌ BẠN THAY VÀO RỒI TỰ LÀM TIẾP NHÉ. HỌC TỐT

10 tháng 5 2019

a, m=2

\(x^2-4x+3=0\)

=>\(\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

b, Phương trình có nghiệm 

=> \(\Delta'\ge0\)

=> \(m^2-m^2+m-1\ge0\)=>\(m\ge1\)

Theo Vi-ét ta có 

\(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{cases}}\)

Vì \(x_2\)là nghiệm của phương trình nên \(x^2_2-2mx_2+m^2-m+1=0\)=>\(2mx_2=x_2^2+m^2-m+1\)

Khi đó

\(\left(x_1^2+x_2^2\right)-3x_1x_2-3+m^2-m+1=0\)

=>\(\left(x_1+x_2\right)^2-5x_1x_2+m^2-m-2=0\)

=> \(4m^2-5\left(m^2-m+1\right)+m^2-m-2=0\)

=> \(m=\frac{7}{4}\)( thỏa mãn \(m\ge1\)

Vậy \(m=\frac{7}{4}\)