K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2021

hello

3 tháng 10 2021

Cứ xét 2 trường hợp ra rồi biện luận thôi ; lưu ý điều kiện x khác -1 

28 tháng 1 2021

a, \(\sqrt{2x^2-2x+m}=x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2x+m=x^2+2x+1\\x+1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x+m-1=0\left(1\right)\\x\ge-1\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có nghiệm \(x\ge-1\) chỉ có thể xảy ra các trường hợp sau

TH1: \(x_1\ge x_2\ge-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'\ge0\\\dfrac{x_1+x_2}{2}\ge-1\\1.f\left(-1\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\2\ge-1\\m+4\ge0\end{matrix}\right.\)

\(\Leftrightarrow-4\le m\le5\)

TH2: \(x_1\ge-1>x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\m+4< 0\end{matrix}\right.\)

\(\Rightarrow\) vô nghiệm

Vậy \(-4\le m\le5\)

NV
30 tháng 12 2020

ĐKXĐ: \(1\le x\le2\)

\(\Leftrightarrow\left[{}\begin{matrix}-x^2+3x-2=0\\x^2-2x+m=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x^2-2x+m=0\left(1\right)\end{matrix}\right.\)

Pt có 2 nghiệm pb khi và chỉ khi:

TH1: (1) vô nghiệm \(\Leftrightarrow m>1\)

Th2: 2 nghiệm của (1) đều không thuộc \(\left[1;2\right]\)

(1) \(\Leftrightarrow x^2-2x=-m\)

Xét hàm \(f\left(x\right)=x^2-2x\)

\(f\left(1\right)=-1\) ; \(f\left(2\right)=0\)

Để hàm có 2 nghiệm đều không thuộc khoảng đã cho thì \(-m>0\Leftrightarrow m< 0\)

Vậy \(\left[{}\begin{matrix}m>1\\m< 0\end{matrix}\right.\)

1 tháng 1 2021
Bạn tham khảo lời giải của mình!

Bài tập Tất cả

26 tháng 2 2016

Ta có \(2x^2-\left(3m+1\right)x+m^2+m=0\) (a) 

\(\Leftrightarrow\) \(x=m:=x_1\) hoặc \(x=\frac{m+1}{2}:=x_2\)

Bởi vậy \(\begin{cases}2x^2-\left(3m+1\right)x+m^2+m=0\\x^2-mx-3m-1\ge0\end{cases}\)  (1) có hai nghiệm phân biệt khi và chỉ khi hai nghiệm \(x_1\) , \(x_2\) đó

khác nhau và cùng thỏa mãn ( b) , hay là :

\(\begin{cases}\begin{cases}m\ne\frac{m+1}{2}\\m^2-m^2-3m-1\ge0\end{cases}\\\left(\frac{m+1}{2}\right)^2-m\frac{m+1}{2}-3m-1\ge0\\\end{cases}\)

\(\Leftrightarrow\) \(\begin{cases}m\ne1\\m\le-\frac{1}{3}\\m^2+12m+3\le0\end{cases}\)

\(\left(\Rightarrow m\ne1\right)\)

\(\Leftrightarrow\) \(\begin{cases}m\le-\frac{1}{3}\\-6-\sqrt{33}\le m\le-6+\sqrt{33}\end{cases}\)

\(\Leftrightarrow-6-\sqrt{33}\le m\le-\frac{1}{3}\)

Vậy  \(-6-\sqrt{33}\le m\le-\frac{1}{3}\) là các giá trị cần tìm

 

NV
21 tháng 10 2019

ĐKXĐ: \(x\ge0\)

Pt luôn có 1 nghiệm \(x=0\)

Xét \(mx^2+2x-m+1=0\) (1)

Để pt đã cho có 1 nghiệm pb \(\Leftrightarrow\left(1\right)\) có đúng 1 nghiệm dương

- Với \(\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\) không thỏa mãn

- Với \(m\ne\left\{0;1\right\}\)

\(\Delta'=m^2-m+1=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\) \(\forall m\)

Để (1) có đúng 1 nghiệm dương \(\Leftrightarrow\left(1\right)\) có 2 nghiệm trái dấu

\(\Leftrightarrow m\left(1-m\right)< 0\Leftrightarrow0< m< 1\)

10 tháng 11 2021

làm sao để ra 0<m<1 thế ạ