\(\frac{3sinx+m}{4cosx-3}\)=2 có nghiệm

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 9 2019

ĐKXĐ: \(cosx\ne\frac{3}{4}\)

\(\Leftrightarrow3sinx+m=8cosx-6\)

\(\Leftrightarrow3sinx-8cosx=-m-6\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(3^2+8^2\ge\left(-m-6\right)^2\)

\(\Rightarrow\left(m+6\right)^2\le73\)

\(\Rightarrow-6-\sqrt{73}\le m\le-6+\sqrt{73}\)

Kết hợp thêm điều kiện \(m\ne12\pm\frac{3\sqrt{7}}{4}\)

NV
1 tháng 10 2019

Đặt \(a=3sinx-4cosx\Rightarrow a^2\le\left(3^2+4^2\right)\left(sin^2x+cos^2x\right)=25\)

\(\Rightarrow-5\le a\le5\)

\(y=a^2-2a+1\ge2m\)

\(\Rightarrow\left(a-1\right)^2\ge2m\)

Để BPT đúng với mọi x thuộc R

\(\Leftrightarrow2m\le\min\limits_{\left[-5;5\right]}\left(a-1\right)^2\)

\(\left(a-1\right)^2\ge0\) \(\forall a\Rightarrow2m\le0\Rightarrow m\le0\)

AH
Akai Haruma
Giáo viên
1 tháng 10 2019

Lời giải:

Đặt \(3\sin x+4\cos x=t\)

Áp dụng BĐT Bunhiacopxky:

\(t^2=(3\sin x+4\cos x)^2\leq (3^2+4^2)(\sin ^2x+\cos ^2x)=25\)

\(\Rightarrow -5\leq t\leq 5\)

Với $t\in [-5;5]$ ta có:

\(y=3t^2+4t+1\leq 3.25+4.5+1=96\)

Mặt khác: \(y=3t^2+4t+1=3(t+\frac{2}{3})^2-\frac{1}{3}\)

\((t+\frac{2}{3})^2\geq 0, \forall t\in [-5;5]\Rightarrow y\geq -\frac{1}{3}\)

Vậy \(y_{\min}=\frac{-1}{3}; y_{\max}=96\)

5 tháng 8 2020

Cái đoạn theo điều kiện có nghiệm sao lại suy ra được thế kia hả anh?

NV
5 tháng 8 2020

Tồn tại x để \(a.sinx+b.cosx=c\) khi và chỉ khi \(a^2+b^2\ge c^2\)

NV
22 tháng 7 2020

Nhận thấy \(cosx=0\) không phải nghiệm với mọi m

Pt tương đương: \(\frac{3sinx}{cosx}-m+2=0\Leftrightarrow tanx=\frac{m-2}{3}\)

\(0\le x\le\frac{\pi}{4}\Rightarrow0\le tanx\le1\)

\(\Rightarrow0\le\frac{m-2}{3}\le1\Rightarrow2\le m\le5\)

\(\Rightarrow m=\left\{2;3;4;5\right\}\)

NV
13 tháng 4 2020

\(y'=3cosx-4sinx-\frac{1}{cos^2x}\)

\(\Rightarrow y'\left(\frac{\pi}{6}\right)=3cos\left(\frac{\pi}{6}\right)-4sin\left(\frac{\pi}{6}\right)-\frac{1}{cos^2\left(\frac{\pi}{6}\right)}=\frac{-20+9\sqrt{3}}{6}\)

b/ \(y'=-8x^3+\frac{3}{x^4}-\frac{1}{x^2}\)

25 tháng 8 2019

1) a) cos7x - √3 sin7x = -√2 (a = 1; b = -√3; c = -√2)

=> a^2 + b^2 =4 > c^2 = 2

Chia 2 vế pt (*) cho \(\sqrt{a^2+b^2}=2\) ta đc:

<=> 1/2cos7x - √3/2 sin7x = -√2/2

<=> sin(π/6)cos7x - cos(π/6)sin7x = sin(-π/4)

<=> sin(π/6 - 7x) = sin(-π/4)

<=> π/6 - 7x = -π/4 + k2π

hoặc (k∈Z)

π/6 - 7x = π + π/4 + k2π

<=> x = 5π/84 + k2π/7

hoặc (k∈Z)

x = -13π/84 + k2π/7

25 tháng 8 2019

1) b) Ta có:

* 2π/5 < x < 6π/7

<=> 2π/5 < 5π/84 + k2π/7 < 6π/7

<=> 143π/420 < k2π/7 < 67π/84

<=> 143/120 < k < 67/24

=> k ϵ {2}

=> x = 53π/84

* 2π/5 < x < 6π/7

<=> 2π/5 < -13π/84 + k2π/7 < 6π/7

<=> 233/120 < k < 85/24

=> k ϵ {2; 3}

=> x = 5π/12 ; x = 59π/84

Vậy có tất cả 3 nghiệm thỏa mãn (2π/5;6π/7) là x = 53π/84; x = 5π/12 ; x = 59π/84.