Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt \(\left(\frac{3}{2}\right)^x=a\) \((a>0)\)
PT tương đương với:
\(\left(\frac{9}{4}\right)^x-2.\left(\frac{3}{2}\right)^x+m^2=0\)
\(\Leftrightarrow a^2-2a+m^2=0\) (1)
-Trước tiên, để pt đầu tiên có hai nghiệm phân biệt thì (1) cũng phải có hai nghiệm phân biệt \(\rightarrow \) \(\Delta'=1-m^2>0\Leftrightarrow -1< m< 1\)
Áp dụng hệ thức Viete với \(a_1,a_2\) là nghiệm của (1) \(\left\{\begin{matrix} a_1+a_2=2\\ a_1a_2=m^2\end{matrix}\right.\)
-Vì \(a\) luôn dương nên \(\left\{\begin{matrix} a_1+a_2>0\\ a_1a_2>0\end{matrix}\right.\Leftrightarrow m^2>0 \Leftrightarrow m\neq 0\)
-Xét đk cuối cùng, để pt đầu tiên có hai nghiệm trái dấu, tức \(x<0\) hoặc $x>0$ thì \(a<1\) hoặc \(a>1\), hay \((a_1-1)(a_2-1)< 0\)
\(\Leftrightarrow a_1a_2-(a_1+a_2)+1< 0\Leftrightarrow m^2<1\Leftrightarrow -1< m< 1\)
Vậy \(-1< m< 1; m\neq 0\)
Bài 2:
Đặt \(2^x=a\Rightarrow \) \(4^x-2m.2^x+2m=0\) tương đương với:
\(a^2-2ma+2m=0\) (1)
Để pt đầu tiên có hai nghiệm phân biệt thì (1) cũng phải có hai nghiệm phân biệt
\(\Rightarrow \Delta'=m^2-2m>0\Leftrightarrow m< 0\) hoặc $m>2$
Áp dugnj hệ thức viete với $a_1,a_2$ là hai nghiệm của phương trình:
\(a_1a_2=2m\Leftrightarrow 2^{x_1}.2^{x_2}=2m\Leftrightarrow 2^{x_1+x_2}=2m\Leftrightarrow 8=2m\rightarrow m=4\)
(thỏa mãn)
Vậy \(m=4\)
Câu 1:
Đặt \(3^x=t(t>0)\)
PT trở thành:
\(t^2-6.t+5=m\)
\(\Leftrightarrow t^2-6t+(5-m)=0\)
Để PT có đúng một nghiệm thì \(\Delta'=9-(5-m)=0\)
\(\Leftrightarrow m=-4\)
Thử lại \(9^x-6.3^x+9=0\Leftrightarrow 3^x=3\Leftrightarrow x=1\in [0;+\infty )\) (đúng)
Vậy \(m=-4\)
Câu 2:
\(4^x-2^x-m\geq 0\Leftrightarrow (2^x)^2-2^x-m\geq 0\)
Đặt \(2^x=t\Rightarrow t^2-t-m\geq 0\) với mọi \(t\in (1; 2)\)
\(\Leftrightarrow m\leq t^2-t\Leftrightarrow m\leq \min (t^2-t)\)
Xét hàm \(f(t)=t^2-t\Rightarrow f'(t)=2t-1>0\forall t\in (1;2)\)
\(\Rightarrow f(t)> f(1)=0\) với mọi \(t\in (1;2)\)
Do đó \(m\leq 0\)
Đặt \(4^x=t>0\) pt trở thành:
\(f\left(t\right)=\left(m+1\right)t^2-2\left(2m-3\right)t+6m+5=0\) (1)
Để pt đã cho có 2 nghiệm trái dấu thì (1) cần có 2 nghiệm phân biệt thỏa mãn:
\(0< t_1< 1< t_2\) \(\Rightarrow\left\{{}\begin{matrix}a.f\left(0\right)>0\\a.f\left(1\right)< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(m+1\right)\left(6m+5\right)>0\\\left(m+1\right)\left(3m+12\right)< 0\end{matrix}\right.\)
\(\Rightarrow-4< m< -1\) \(\Rightarrow a.b=\left(-1\right).\left(-4\right)=4\)
1) bạn dùng dấu U
điều kiện \(\begin{cases}m\ne0,m>-\frac{1}{4}\\m< 1\end{cases}\)
muons dễ nhìn thì vẽ trục số: 0 -1/4 1 x
=> điều kiện x \(\in\left(-\frac{1}{4};1\right)\backslash\left\{0\right\}\)
z_1+z_2=-m-1,z_1z_2=m^2+m-2/4, |z_1+z_2|<=|z_1|+|z_2|=/sqrt(10)->|m-1|<=\sqrt(10)->m=......
|z_1|+|z_2|>=2\sqrt(|z_1z_2|)= suy ra m=......
giao 2 cai lại r4a thôi