Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(\left\{{}\begin{matrix}2x^2+2x-6>0\\2x^2-5x+4>0\\mx-5>0\end{matrix}\right.\)
Khi đó pt tương đương:
\(2log_{mx-5}\left(x^2+2x-6\right)=2log_{mx-5}\left(2x^2-5x+4\right)\)
\(\Leftrightarrow x^2+2x-6=2x^2-5x+4\)
\(\Leftrightarrow x^2-7x+10=0\Rightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Thay 2 nghiệm vào 2 điều kiện đầu đều thỏa mãn
\(\Rightarrow\) pt có nghiệm duy nhất khi và chỉ khi có đúng 1 nghiệm thỏa mãn \(mx-5>0\)
TH1: \(\left\{{}\begin{matrix}2m-5>0\\5m-5\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>\frac{5}{2}\\m\le1\end{matrix}\right.\) (ko có m thỏa mãn)
TH2: \(\left\{{}\begin{matrix}5m-5>0\\2m-5\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>1\\m\le\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow1< m\le\frac{5}{2}\)
a/ ĐKXĐ: \(x>\frac{1}{2}\)
\(\Leftrightarrow\frac{3x^2-1}{\sqrt{2x-1}}-\sqrt{2x-1}=mx\)
\(\Leftrightarrow\frac{3x^2-2x}{\sqrt{2x-1}}=mx\Leftrightarrow\frac{3x-2}{\sqrt{2x-1}}=m\)
Đặt \(\sqrt{2x-1}=a>0\Rightarrow x=\frac{a^2+1}{2}\Rightarrow\frac{3a^2-1}{2a}=m\)
Xét hàm \(f\left(a\right)=\frac{3a^2-1}{2a}\) với \(a>0\)
\(f'\left(a\right)=\frac{12a^2-2\left(3a^2-1\right)}{4a^2}=\frac{6a^2+2}{4a^2}>0\)
\(\Rightarrow f\left(a\right)\) đồng biến
Mặt khác \(\lim\limits_{a\rightarrow0^+}\frac{3a^2-1}{2a}=-\infty\); \(\lim\limits_{a\rightarrow+\infty}\frac{3a^2-1}{2a}=+\infty\)
\(\Rightarrow\) Phương trình đã cho luôn có nghiệm với mọi m
b/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\sqrt[4]{\left(x-1\right)^2}+4m\sqrt[4]{\left(x-1\right)\left(x-2\right)}+\left(m+3\right)\sqrt[4]{\left(x-2\right)^2}=0\)
Nhận thấy \(x=2\) không phải là nghiệm, chia 2 vế cho \(\sqrt[4]{\left(x-2\right)^2}\) ta được:
\(\sqrt[4]{\left(\frac{x-1}{x-2}\right)^2}+4m\sqrt[4]{\frac{x-1}{x-2}}+m+3=0\)
Đặt \(\sqrt[4]{\frac{x-1}{x-2}}=a\) pt trở thành: \(a^2+4m.a+m+3=0\) (1)
Xét \(f\left(x\right)=\frac{x-1}{x-2}\) khi \(x>0\)
\(f'\left(x\right)=\frac{-1}{\left(x-2\right)^2}< 0\Rightarrow f\left(x\right)\) nghịch biến
\(\lim\limits_{x\rightarrow2^+}\frac{x-1}{x-2}=+\infty\) ; \(\lim\limits_{x\rightarrow+\infty}\frac{x-1}{x-2}=1\) \(\Rightarrow f\left(x\right)>1\Rightarrow a>1\)
\(\left(1\right)\Leftrightarrow m\left(4a+1\right)=-a^2-3\Leftrightarrow m=\frac{-a^2-3}{4a+1}\)
Xét \(f\left(a\right)=\frac{-a^2-3}{4a+1}\) với \(a>1\)
\(f'\left(a\right)=\frac{-2a\left(4a+1\right)-4\left(-a^2-3\right)}{\left(4a+1\right)^2}=\frac{-4a^2-2a+12}{\left(4a+1\right)^2}=0\Rightarrow a=\frac{3}{2}\)
\(f\left(1\right)=-\frac{4}{5};f\left(\frac{3}{2}\right)=-\frac{3}{4};\) \(\lim\limits_{a\rightarrow+\infty}\frac{-a^2-3}{4a+1}=-\infty\)
\(\Rightarrow f\left(a\right)\le-\frac{3}{4}\Rightarrow m\le-\frac{3}{4}\)
Lời giải:
Ta có: \(\sqrt{(2x^2+1)^2}=x^2-2(m-1)x+m^2-3m\)
\(\Leftrightarrow 2x^2+1=x^2-2(m-1)x+m^2-3m\)
\(\Leftrightarrow x^2+2(m-1)x+(3m+1-m^2)=0\)
Để PT có nghiệm duy nhất thì :
\(\Delta'=(m-1)^2-(3m+1-m^2)=0\)
\(\Leftrightarrow 2m^2-5m=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{5}{2}\end{matrix}\right.\)
Giống bài trước, \(x=3+2\sqrt{2}\) là nghiệm
\(\Rightarrow y=\dfrac{mx+1}{x-m}\Rightarrow y'=\dfrac{-m^2-1}{\left(x-m\right)^2}\) nghịch biến trên miền xác định
\(\Rightarrow\max\limits_{\left[1;2\right]}y=y\left(1\right)=\dfrac{m+1}{1-m}=-2\Rightarrow m\)
Lời giải:
PT \(\Rightarrow \left\{\begin{matrix} x\leq 3\\ 2x^2+mx=(3-x)^2=x^2-6x+9\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\leq 3\\ x^2+(m+6)x-9=0(1)\end{matrix}\right.\)
Với (1):
$\Delta=(m+6)^2+36$ nên PT(1) luôn có 2 nghiệm phân biệt với mọi $m$. Để PT ban đầu có duy nhất 1 nghiệm thì PT (1) phải có 1 nghiệm $x_1\leq 3$, nghiệm còn lại $x_2>3$
Điều này xảy ra khi mà :
\((x_1-3)(x_2-3)\leq 0\)
\(\Leftrightarrow x_1x_2-3(x_1+x_2)+9\leq 0\)
\(\Leftrightarrow -9-3(-m-6)+9\leq 0\Leftrightarrow 3(m+6)\leq 0\Leftrightarrow m\leq -6\)