K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

Đầu tiên để pt có 2 nghiệm phân biệt thì \(\Delta'>0\) rồi tìm điều kiện của m

Dùng Vi-ét tính ra m thôi bạn

6 tháng 7 2017

Để PT có 2 nghiệm phân biệt thì

\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)>0\)

\(\Leftrightarrow m< 0\)

Theo vi et ta có:

\(\hept{\begin{cases}x_1+x_2=-2m+4\\x_1.x_2=m^2-2m+4\end{cases}}\)

Theo đề bài thì

\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)

\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-2x_1.x_2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)

\(\Leftrightarrow\frac{2}{\left(-2m+4\right)^2-2\left(m^2-2m+4\right)}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)

\(\Leftrightarrow\frac{1}{m^2-6m+4}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)

\(\Leftrightarrow15m^4-120m^3+296m^2-480m+240=0\)

Với m < 0  thì VP > 0 

Vậy không tồn tại m để thỏa bài toán.

5 tháng 7 2019

Xét phương trình trên có:

\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)=m^2-4m+4-m^2+2m-4=-2m\)

Để phương trình trên có hai nghiệm phân biệt \(x_1;x_2\)điều kiện là:

\(\Delta'>0\Leftrightarrow-2m>0\Leftrightarrow m< 0\)

Với m<0. Áp dụng định lí Vi ét ta có:

\(\hept{\begin{cases}x_1+x_2=-2\left(m-2\right)\\x_1.x_2=m^2-2m+4\end{cases}}\)

=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=4\left(m-2\right)^2-2\left(m^2-2m+4\right)=2m^2-12m+8\)

Ta có:

\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)

<=> \(\frac{2}{2m^2-12m+8}-\frac{1}{m^2-2m+4}=\frac{1}{15m}\)(điều kiện: \(2m^2-12m+8\ne0\))

<=> \(\frac{1}{m^2+4-6m}-\frac{1}{m^2+4-2m}=\frac{1}{15m}\)

<=> \(\frac{4m}{\left(m^2+4-6m\right)\left(m^2+4-2m\right)}=\frac{1}{15m}\)

<=> \(60m^2=\left(m^2+4\right)^2-8m\left(m^2+4\right)+12m^2\)

<=> \(\left(m^2+4\right)^2-8m\left(m^2+4\right)-48m^2=0\)

<=> \(\left(\frac{m^2+4}{m}\right)^2-8\frac{m^2+4}{m}-48=0\)

Đặt t=\(\frac{m^2+4}{m}< 0\)

Ta có phương trình ẩn t:

\(t^2-8t-48=0\Leftrightarrow\orbr{\begin{cases}t=-4\\t=12\left(loai\right)\end{cases}}\)

Với t=-4 ta có:

\(\frac{m^2+4}{m}=-4\Leftrightarrow m^2+4m+4=0\Leftrightarrow\left(m+2\right)^2=0\Leftrightarrow m=-2\)( tmđk)

vậy m=-2

27 tháng 4 2019

\(x^2-\left(2m+3\right)x-2m-4=0\)

Ta có \(\Delta=\left(2m+3\right)^2+4\left(2m+4\right)\)

              \(=4m^2+12m+9+8m+16\)

              \(=4m^2+20m+25\)

               \(=\left(2m+5\right)^2\)

Để pt có 2 nghiệm phân biệt thì \(\Delta>0\Leftrightarrow m\ne-\frac{5}{2}\)

theo Viet \(\hept{\begin{cases}x_1+x_2=2m+3\\x_1x_2=-2m-4\end{cases}}\)

Ta cso \(\left|x_1\right|+\left|x_2\right|=5\)

\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=5\)

\(\Leftrightarrow x_1^2+2\left|x_1x_2\right|+x_2^2=5\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=5\)

\(\Leftrightarrow\left(2m+3\right)^2-2\left(-2m-4\right)+2\left|-2m-4\right|=5\)

\(\Leftrightarrow4m^2+12m+9+4m+8+4\left|m+2\right|=5\)

\(\Leftrightarrow4m^2+16m+4\left|m+2\right|+12=0\)

Đến đấy bạn xét khoảng của m so với -2 là xong 

30 tháng 4 2021

\(x^4-2\left(m+1\right)x^2+2m+1=0\)

\(\Leftrightarrow x^4-2mx^2-2x^2+2m+1=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-2m\left(x^2-1\right)-\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-2m-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm1\\x^2=2m+1\end{cases}}\)

Để pt có 4 nghiệm pb \(\Leftrightarrow\hept{\begin{cases}2m+1>0\\2m+1\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}m>\frac{-1}{2}\\m\ne0\end{cases}}}\)

Vậy...