K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

17 tháng 4 2016

ta có 

\(\Delta\)=( -m )2  -4.1.( -3m-1) =m2 +12m+4

Để phương trình >0 

\(\Leftrightarrow\)  \(\Delta\)>0

\(\Leftrightarrow\) m2 +12m+4>0

\(\Leftrightarrow\) m \(\in\) \(\left(-\infty;-6-4\sqrt{2}\right)\cap\left(-6+4\sqrt{2};+\infty\right)\)

17 tháng 4 2016

x3+99x2-100x=0

<=>x3+100x2-x2-100x=0

<=>x2(x+100)-x(x+100)=0

<=>(x2-x)(x+100)=0

<=>x2-x=0 (1) hoặc x+100=0 (2)

Giải (1);

x2-x=0<=>x(x-1)=0<=>x=0 hoặc x-1=0<=>x=0 hoặc x=1

Giải (2):

x+100=0=>x=-100

Vậy ....................

26 tháng 1 2017

27 tháng 8 2018

giả sử tất cả các phương trình sau đều vô nghiệm

\(\Rightarrow\left\{{}\begin{matrix}b^2-ac< 0\\c^2-ba< 0\\a^2-cb< 0\end{matrix}\right.\) cộng quế theo quế ta có : \(a^2+b^2+c^2-ab-bc-ca< 0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-2ac-2bc-2ca\right)< 0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2< 0\left(vôlí\right)\)

vậy điều giả sử lúc đầu là sai \(\Rightarrow\left(đpcm\right)\)

Bài 1: 

\(\Delta=\left(-3\right)^2-4\left(m-1\right)=-4m+4+9=-4m+13\)

Để phương trình có hai nghiệm phân biệt thì -4m+13>0

=>-4m>-13

hay m<13/4

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m-1\end{matrix}\right.\)

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}x_1+x_2=3\\2x_1-5x_2=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=6\\2x_1-5x_2=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x_2=14\\x_1+x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=2\\x_1=1\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=m-1\)

nên m-1=2

hay m=3

Bài 2:

\(\Delta=\left(2m-4\right)^2-4\cdot\left(-2m+1\right)\)

\(=4m^2-16m+16+8m-4\)

\(=4m^2-8m+12\)

\(=4m^2-8m+4+8=\left(2m-2\right)^2+8>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Để phương trình có hai nghiệm dương thì \(\left\{{}\begin{matrix}-2\left(m-2\right)>0\\-2m+1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m< \dfrac{1}{2}\)

Bài 1: 

\(\Delta=\left(-3\right)^2-4\left(m-1\right)=-4m+4+9=-4m+13\)

Để phương trình có hai nghiệm phân biệt thì -4m+13>0

=>-4m>-13

hay m<13/4

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m-1\end{matrix}\right.\)

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}x_1+x_2=3\\2x_1-5x_2=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=6\\2x_1-5x_2=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x_2=14\\x_1+x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=2\\x_1=1\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=m-1\)

nên m-1=2

hay m=3

Bài 2:

\(\Delta=\left(2m-4\right)^2-4\cdot\left(-2m+1\right)\)

\(=4m^2-16m+16+8m-4\)

\(=4m^2-8m+12\)

\(=4m^2-8m+4+8=\left(2m-2\right)^2+8>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Để phương trình có hai nghiệm dương thì \(\left\{{}\begin{matrix}-2\left(m-2\right)>0\\-2m+1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m< \dfrac{1}{2}\)