Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
a)\(\Delta\)=(2m+3)^2-4.(m^2-1)
=12m+13
=>Phương trình có 2 nghiệm phân biệt<=>\(\Delta\ge0\)
Hay 12m+13>_0
<=>m>_-13/12
b)Vì phương trình có nghiệm x1=1 nên thay x=1 vào phương trình ta có
1^2-(2m+3)1+m^2-1=0
<=>m^2-2m-3=0
<=>m=-1 hoặc m=3
Áp dụng hệ thức Vi-ét ta có
x1.x2=m^2-1
=>x2=m^2-1
+)m=-1=>x2=0
+)m=3=>x2=8
c)Theo câu a ta có
Phương trình có 2 nghiệm phân biệt<=>m>_-13/12
Áp dụng hệ thức Vi-ét ta có
x1+x2=2m+3 và x1.x2=m^2-1 (1)
Đặt A= x1^2+x2^2=(x1+x2)^2-2.x1.x2
Thay (1) vào A ta có
A=(2m+3)^2-2(m^2-1)
=4m^2+12m+11
=(2m+3)^2+2>_2 Hay GTNN của x1^2+x2^2 là 2
Dấu "=" xảy ra <=>2m+3=0<=>m=-3/2
d)Câu này dễ b tự lm nha
a) \(\Delta\)' = (-m)2 - m(m + 1) = m2 - m2 - m = - m
Để (*) có 2 nghiệm phân biệt <=> \(\Delta\)' \(\ge\) 0 <=> - m \(\ge\) 0 <=> m \(\le\) 0
b) Với m \(\le\) 0 thì (*) có 2 nghiệm x1 ; x2. Theo hệ thức Vi ét có:
x1 + x2 = 2m ; x1. x2 = m(m +1)
Để x1 + 2x2 = 0 <=> x1 = -2x2
=> x1 + x2 = -2x2 + x2 = -x2 = 2m => x2 = -2m và x1 = -2. (-2m) = 4m
Khi đó, x1.x2 = -8m2 = m.(m+1) => 9m2 + m = 0 <=> m(m +9) = 0 <=> m = 0 (TM) hoặc m =-9 (không TM )
Vậy m = 0 thì...
x2 - 2( m + 1 )x + 2m - 4 = 0
1. Δ = b2 - 4ac = [ -2( m + 1 ) ]2 - 4( 2m - 4 )
= 4( m + 1 )2 - 8m + 16
= 4( m2 + 2m + 1 ) - 8m + 16
= 4m2 + 8m + 4 - 8m + 16
= 4m2 + 20
Dễ nhận thấy Δ ≥ 20 > 0 ∀ m
hay phương trình luôn có nghiệm với mọi m ( đpcm )
2. Dù là nghiệm kép hay nghiệm phân biệt thì hai nghiệm của phương trình đều viết được dưới dạng
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{2m+2+\sqrt{4m^2+20}}{2}\\x_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{2m+2-\sqrt{4m^2+20}}{2}\end{cases}}\)
Khi đó \(x_1^2+x_2^2=\left(\frac{2m+2+\sqrt{4m^2+20}}{2}\right)^2+\left(\frac{2m+2-\sqrt{4m^2+20}}{2}\right)^2\)
\(=\left(\frac{2m+2+2\sqrt{m^2+5}}{2}\right)^2+\left(\frac{2m+2-2\sqrt{m^2+5}}{2}\right)^2\)( em đưa 2 ra ngoài căn chắc chị hiểu )
\(=\left(\frac{2\left(m+1+\sqrt{m^2+5}\right)}{2}\right)^2+\left(\frac{2\left(m+1-\sqrt{m^2+5}\right)}{2}\right)^2\)
\(=\left(m+1+\sqrt{m^2+5}\right)^2+\left(m+1-\sqrt{m^2+5}\right)^2\)
\(=\left[\left(m+1\right)+\sqrt{m^2+5}\right]^2+\left[\left(m+1\right)-\sqrt{m^2+5}\right]^2\)
\(=\left(m+1\right)^2+2\left(m+1\right)\sqrt{m^2+5}+m^2+5+\left(m+1\right)^2-2\left(m+1\right)\sqrt{m^2+5}+m^2+5\)
\(=2\left(m+1\right)^2+2m^2+10\)
\(=2\left(m^2+2m+1\right)+2m^2+10\)
\(=2m^2+4m+2+2m^2+10=4m^2+4m+12\)
3. Em mới lớp 8 nên chưa học Min Max mấy dạng này chị thông cảm :(((((((((
à xin phép em sửa một tí :))
1. ... = 4m2 + 20
Dễ nhận thấy Δ ≥ 20 > 0 ∀ m
hay phương trình luôn có hai nghiệm phân biệt với mọi m ( đpcm )
2. Vì phương trình luôn có hai nghiệm phân biệt nên hai nghiệm đó luôn viết được dưới dạng : ...
em quên nhìn cái " luôn có hai nghiệm phân biệt " sorry chị :(
x2+2(m-1)x+m2+1=0 (*) Để phương trình (*) có 2 nghiệm phân biệt khi: \(\Delta>0\) hay \(\Delta=4\left(m-1\right)^2-4\left(m^2+1\right)>0\Leftrightarrow-8m>0\Leftrightarrow m<0\left(I\right)\)
Theo giả thiết giả sử ta có: \(x_1>1,x_2<1\Rightarrow\left(x_1-1\right)\left(x_2-1\right)<0\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1<0\left(II\right)\)
Theo Vi-et ta có: \(x_1x_2=m^2+1;x_1+x_2=-2\left(m-1\right)\) Thay vào (II) Ta có: \(m^2+1+2\left(m-1\right)+1<0\Leftrightarrow m\left(m+2\right)<0\)
Hay -2<m<0 Thỏa mãn cả (I).
Vậy -2<m<0 Thì phương trình (*) thỏa mãn điều kiện bài ra
\(\text{Δ}=\left(m-1\right)^2-4\cdot\left(-m\right)=m^2-2m+1+4m=m^2+2m+1=\left(m+1\right)^2>=0\)
Để phương trình có hai nghiệm phân biệt thì m+1<>0
hay m<>-1
Theo đề, ta có: m-1<2
hay m<3