K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 1 2022

a.

- Với \(m=-1\Rightarrow x=\dfrac{6}{7}\) (ktm)

- Với \(m\ne-1\) 

\(\Delta=\left(8m+1\right)^2-24m\left(m+1\right)=40m^2-8m+1>0;\forall m\) \(\Rightarrow\) pt luôn có 2 nghiệm pb

Để pt có 2 nghiệm thỏa mãn: \(x_1< x_2\le1\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)\ge0\\\dfrac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_1\right)+1\ge0\\x_1+x_2< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6m}{m+1}-\dfrac{8m+1}{m+1}+1\ge0\\\dfrac{8m+1}{m+1}< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-m}{m+1}\ge0\\\dfrac{6m-1}{m+1}< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-1< m\le0\\-1< m< \dfrac{1}{6}\end{matrix}\right.\) \(\Rightarrow-1< m\le0\)

\(\Rightarrow\) Pt có nghiệm thuộc khoảng đã cho khi: \(\left[{}\begin{matrix}m>0\\m< -1\end{matrix}\right.\)

b.

Đặt \(f\left(x\right)=\left(m+1\right)x^2-\left(8m+1\right)x+6m\)

Pt đã cho có đúng 1 nghiệm thuộc (0;1) khi:

\(f\left(0\right).f\left(1\right)< 0\)

\(\Leftrightarrow6m\left(m+1-8m-1+6m\right)< 0\)

\(\Leftrightarrow-6m^2< 0\)

\(\Leftrightarrow m\ne0\)

7 tháng 5 2016

\(\Leftrightarrow2m.2^x+\left(2m+1\right)\left(3-\sqrt{5}\right)^x+\left(3+\sqrt{5}\right)^x=0\)

\(\Leftrightarrow\left(\frac{3+\sqrt{5}}{2}\right)^x+\left(2m+1\right)\left(\frac{3-\sqrt{5}}{2}\right)^x+2m< 0\)

Đặt \(t=\left(\frac{3+\sqrt{5}}{2}\right)^x,0< t\le1\Rightarrow\frac{1}{t}=\left(\frac{3-\sqrt{5}}{2}\right)^x\)

Phương trình trở thành :

\(t+\left(2m+1\right)\frac{1}{t}+2m=0\) (*)

a. Khi \(m=-\frac{1}{2}\) ta có \(t=1\) suy ra \(\left(\frac{3+\sqrt{5}}{2}\right)^x=1\Leftrightarrow x=0\)

Vậy phương trình có nghiệm là \(x=0\)

b. Phương trình (*) \(\Leftrightarrow t^2+1=-2m\left(t+1\right)\Leftrightarrow\frac{t^2+1}{t+1}=-2m\)

Xét hàm số \(f\left(t\right)=\frac{t^2+1}{t+1};t\in\)(0;1]

Ta có : \(f'\left(t\right)=\frac{t^2+2t+1}{\left(t+1\right)^2}\Rightarrow f'\left(t\right)=0\Leftrightarrow=-1+\sqrt{2}\)

t f'(t) f(t) 0 1 0 - + 1 1 -1 + căn 2 2 căn 2 - 2

Suy ra phương trình đã cho có nghiệm đúng

\(\Leftrightarrow2\sqrt{2}-2\le-2m\le1\Leftrightarrow\sqrt{2}-1\ge m\ge-\frac{1}{2}\)

Vậy \(m\in\left[-\frac{1}{2};\sqrt{2}-1\right]\) là giá trị cần tìm

5 tháng 4 2017

a)

Làm từng cái

(1)để có hai nghiệm: \(m^2+m+1\ne0\) ta có

\(m^2+m+1=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall m\)đúng với \(\forall m\)

(2) \(\Delta>0\Rightarrow\left(2m-3\right)^2-4\left(m-5\right)\left(m^2+m+1\right)>0\)

{để đó tý giải quyết sau }

(3) tích hai nghiệm phải dương

\(\Rightarrow x_1x_2=\dfrac{c}{a}>0\Rightarrow m-5>0\Rightarrow m>5\)

(4) tổng hai nghiệm phải dương

\(\Rightarrow-\dfrac{b}{a}>0\Rightarrow2m-3< 0\Rightarrow m< \dfrac{3}{2}\)

từ (3) (4) => không có m thỏa mãn => kết luận vô nghiệm

 

 

5 tháng 4 2017

câu b)

có vẻ nhàn hơn

(1) \(\Delta'>0\Rightarrow9m^2-9m^2+2m-2=2m-2>0\Rightarrow m>1\)

(2)\(-\dfrac{b}{a}>0\Rightarrow m>0\)

(3) \(\dfrac{c}{a}>0\Rightarrow9m^2-2m+2>0\) đúng vơi mọi m

(1)(2)(3) nghiệm là: m>1

17 tháng 5 2021

Đặt \(f\left(x,m\right)=\left(m^2+1\right)x^2+\left(2m+1\right)x-5\)

\(ycbt\Leftrightarrow\hept{\begin{cases}f\left(-1,m\right)\le0\\f\left(1,m\right)\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}m^2-2m-5\le0\\m^2+2m-3\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}1-\sqrt{6}\le m\le1+\sqrt{6}\\-3\le m\le1\end{cases}}\)

\(\Leftrightarrow1-\sqrt{6}\le m\le1\)

19 tháng 5 2021

Đặt ƒ (x,m)=(m2+1)x2+(2m+1)x−5

ycbt⇔{

ƒ (−1,m)≤0
ƒ (1,m)≤0

⇔{

m2−2m−5≤0
m2+2m−3≤0

⇔{

1−√6≤m≤1+√6
−3≤m≤1

⇔1−√6≤m≤1

5 tháng 6 2016

a, tự làm

b, để bpt có nghiệm đúng với mọi x thuộc R <=> \(^{\Delta}\)     \(\le\)   0