Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 câu a,b tự làm nhé " thay k=-3 vào là ra
bài 1 câu c "
\(4x^2-25+k^2+4kx=0.\)
thay x=-2 vào ta được
\(16-25+k^2+-8k=0\)
\(-9+k^2-8k=0\Leftrightarrow k^2+k-9k-9=0\)
\(k\left(k+1\right)-9\left(k+1\right)=0\)
\(\left(k+1\right)\left(k-9\right)=0\)
vậy k=1 , 9 thì pt nhận x=-2
bài 2 xác đinh m ? đề ko có mờ đề phải là xác định a nếu là xác định a thì thay x=1 vào rồi tính là ra
bài 3 cũng éo hiểu xác định a ? a ở đâu
1 là phải xác đinh m , nếu là xác đinh m thì thay x=-2 vào rồi làm
. kết luận của chúa Pain đề như ###
x2−2(m+1)x+m2+2=0x2−2(m+1)x+m2+2=0
Để phương trình có hai nghiệm x1,x2x1,x2 thì Δ′≥0Δ′≥0
⇔(m+1)2−m2−2≥0⇔(m+1)2−m2−2≥0
⇔2m−1≥0⇔m≥12⇔2m−1≥0⇔m≥12
Theo Vi-et ta có:
⇒{x1.x2=m2+2x1+x2=2(m+1)⇒P=m2+2−2.2(m+1)−6=m2−4m−8=(m−2)2−12(m−2)2≥0⇒P≥−12⇒{x1.x2=m2+2x1+x2=2(m+1)⇒P=m2+2−2.2(m+1)−6=m2−4m−8=(m−2)2−12(m−2)2≥0⇒P≥−12
Dấu "=" xảy ra ⇔m=2 (thỏa mãn).
Vậy m=2m=2 thì PP đạt giá trị nhỏ nhất là -12.
Nhận xét: Phương trình bậc 3 luôn có ít nhất 1 nghiệm thực .
Để phương trình bậc 3 có đúng 2 nghiệm phân biệt thì phương trình bậc 3 phải tách được thành:
( x - a) (x - b)2 với a khác b
Đối với bài trên chúng ta làm như sau:
\(x^3-2mx^2+\left(m^2+5m\right)x-2m^2-2m-8=0\)
<=> \(\left(x^3-8\right)-\left(2mx^2-5mx+2m\right)+\left(m^2x-2m^2\right)=0\)
<=> \(\left(x-2\right)\left(x^2+2x+4\right)-m\left(2x-1\right)\left(x-2\right)+m^2\left(x-2\right)=0\)
<=> \(\left(x-2\right)\left(x^2+2x+4-2mx+m+m^2\right)=0\)
<=> \(\left(x-2\right)\left(x^2+2\left(1-m\right)x+4+m+m^2\right)=0\)
<=> \(\left(x-2\right)\left[\left(x^2+2\left(1-m\right)x+\left(1-m\right)^2\right)+4+m+m^2-\left(1-m\right)^2\right]=0\)
<=> \(\left(x-2\right)\left[\left(x+1-m\right)^2+4+m+m^2-\left(1-m\right)^2\right]=0\)
Phương trình ba đầu có 2 nghiệm phân biệt
đk cần là: \(4+m+m^2-\left(1-m\right)^2=0\Leftrightarrow3+3m=0\Leftrightarrow m=-1\)
Khi đó phương trình có hai nghiệm 2 và -2 khác nhau
Vậy m = - 1 thỏa mãn
( Lớp 8 chưa học đen ta nên giải hơi lủng)
Kiểm tra giúp mình yêu cầu thứ nhất nhé!
Có thể bạn tìm:
"Đề: Tìm m để phương trình (m2-1)x+2=m-1 nhận x=2 là nghiệm.
Giải: Thế x=2 vào phương trình đã cho, ta suy ra (m2-1).2+2=m-1 (vô nghiệm).
Không có giá trị nào của m để phương trình đã cho nhận x=2 là nghiệm. -Hết-".
Thế x=-1 vào phương trình đã cho, ta suy ra 3.(-1)2+4m.(-1)=8 \(\Rightarrow\) m=-5/4.
Bạn xem giúp mình yêu cầu cuối cùng nha!
Có thể bạn tìm:
"Đề: Tìm m để phương trình (2m+3)x-5=(m+2)-x có nghiệm là x=3.
Giải: Thế x=3 vào phương trình đã cho, ta suy ra (2m+3).3-5=(m+2)-3 \(\Rightarrow\) m=-1. -Hết-".