K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 4 2020

\(\Leftrightarrow-3x^3-5x^2+4x+4+m\left(x^3+4x^2+5x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(1-x\right)\left(3x+2\right)+m\left(x+2\right)\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+2\right)\left(-3x^2+x+2+mx^2+2mx+m\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[\left(m-3\right)x^2+\left(2m+1\right)x+m+2\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\\left(m-3\right)x^2+\left(2m+1\right)x+m+2=0\left(1\right)\end{matrix}\right.\)

Để pt đã cho có 3 nghiệm pb nhỏ hơn 1 \(\Leftrightarrow\left(1\right)\) có 2 nghiệm pb khác -2 và nhỏ hơn 1

\(f\left(-2\right)=m-12\ne0\Rightarrow m\ne12\)

\(m\ne3\) ; \(\Delta=\left(2m+1\right)^2-4\left(m-3\right)\left(m+2\right)=8m+25>0\Rightarrow m>-\frac{25}{8}\)

Để (1) có 2 nghiệm pb thỏa mãn \(x_1< x_2< 1\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)>0\\\frac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1>0\\x_1+x_2< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{m+2}{m-3}+\frac{2m+1}{m-3}+1>0\\\frac{2m+1}{m-3}< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{4m}{m-3}>0\\\frac{7}{m-3}< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< 0\\m>3\end{matrix}\right.\\m< 3\end{matrix}\right.\) \(\Rightarrow m< 0\)

Kết hợp lại ta được: \(-\frac{25}{8}< m< 0\)

16 tháng 3 2021

tại sao (2m+1)/(m-3)<2

 

9 tháng 2 2019

bạn thêm đấu bằng vào kết quả hộ mình nhé. sửa lại \(2\le m\le4\)

9 tháng 2 2019

bài 1: bạn chỉ cần giải đen ta làm sao cho nó >=0 .Mình l;àm mẫu câu a nhé:

a) để phương trình có 2 no phân biệt thì \(\Delta\)>=0

\(\Leftrightarrow\left(2m-5\right)^2-\left(m-3\right)\left(5m-11\right)\) >=0

\(\Leftrightarrow-m^{^{ }2}+6m-8\ge0\)

\(\Leftrightarrow2< m< 4\)

vậy 2<m<4 thỏa mãn đề bài

11 tháng 10 2019

pt <=> \(\orbr{\begin{cases}3\left(x^2-6x+5\right)=2-4m\\3\left(x^2-6x+5\right)=4m-2\end{cases}}\)

<=> \(\orbr{\begin{cases}3x^2-18x+13+4m=0\left(1\right)\\3x^2-18x+17-4m=0\left(2\right)\end{cases}}\)

Điều kiện để phương trình ban đầu có 4 nghiệm phân biệt là phương trình (1),và phương trình (2) đều đồng thời có hai nghiệm phân biệt.

Điều kiện phương trình (1) có hai nghiệm phân biệt:

 \(\Delta'>0\Leftrightarrow9^2-3.\left(13+4m\right)>0\Leftrightarrow m< \frac{7}{2}\)

Điều kiện phương trình (2) có hai nghiệm phân biệt:

 \(\Delta'>0\Leftrightarrow9^2-3.\left(17-4m\right)>0\Leftrightarrow m>\frac{-5}{2}\)

Vậy \(-\frac{5}{2}< m< \frac{7}{2}\) thì phương trình ban đầu có 4 nghiệm phân biêt.

16 tháng 2 2016

lớp mấy 

Đặt \(a=x^2\left(a>=0\right)\)

pt trở thành \(a^2+\left(1-2m\right)a+m^2-1=0\)

\(\text{Δ}=\left(1-2m\right)^2-4\left(m^2-1\right)\)

\(=4m^2-4m+1-4m^2+4=-4m+5\)

a: Để pt vô nghiệm thì -4m+5<0

hay m>5/4

b: Để phương trình có hai nghiệm phân biệt thì -4m+5>0

hay m<5/4

c: Để pt có 4 nghiệm phân biệt thì 

\(\left\{{}\begin{matrix}m< \dfrac{5}{4}\\-2m+1>0\\m^2-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m< \dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m< -1\\\dfrac{1}{2}< m< 1\end{matrix}\right.\)

18 tháng 2 2016

a) x4 + (1 - 2m)x2 + m2 - 1 = 0 (1)

Đặt t=x2 ta dc PT: t2+(1-2m)t+m2-1=0(2)

Để PT (1) thì PT(2) vô nghiệm:

Để PT(2) vô nghiệm thì: \(\Delta=\left(1-2m\right)^2-4.\left(m^2-1\right)<0\Leftrightarrow1-4m+4m^2-4m^2+4<0\)

<=>5-4m<0

<=>m>5/4

b)Để PT(1) có 2 nghiệm phân biệt thì PT(2) có duy nhất 1 nghiệm

Để PT(2) có duy nhất 1 nghiệm thì:

\(\Delta=5-4m=0\Leftrightarrow m=\frac{5}{4}\)

c)Để PT(1) có 4 nghiệm phân biệt thì PT(2) có 2 nghiệm phân biệt:

Để PT(2) có 2 nghiệm phân biệt thì:

\(\Delta=5-4m\ge0\Leftrightarrow m\le\frac{5}{4}\)

Mem đây ko rành lắm sai bỏ qua

8 tháng 5 2020

giúp mình 3 câu nữa đi

NV
7 tháng 5 2020

Để pt có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\)

a/ \(1\left(m+1\right)< 0\Rightarrow m< -1\)

b/ \(-3\left(4-m^2\right)< 0\Leftrightarrow m^2-4< 0\Rightarrow-2< m< 2\)

c/ \(\left(m-1\right)\left(m^2+4m-5\right)< 0\)

\(\Leftrightarrow\left(m-1\right)^2\left(m+5\right)< 0\Rightarrow m< -5\)

d/ \(\left(m+1\right)\left(m+1\right)< 0\Leftrightarrow\left(m+1\right)^2< 0\)

\(\Rightarrow\) Ko tồn tại m thỏa mãn

e/ \(2m\left(-m^2-2m+3\right)< 0\)

\(\Leftrightarrow2m\left(1-m\right)\left(m+3\right)< 0\Rightarrow\left[{}\begin{matrix}-3< m< 0\\m>1\end{matrix}\right.\)

f/ \(4\left(2m^2-5m+2\right)< 0\Rightarrow\frac{1}{2}< m< 2\)

g/ \(\left(6-m\right)\left(-m^2-2m+3\right)< 0\)

\(\Leftrightarrow\left(6-m\right)\left(1-m\right)\left(m+3\right)< 0\Rightarrow\left[{}\begin{matrix}m< -3\\1< m< 6\end{matrix}\right.\)

h/ \(m\left(2m-1\right)< 0\Rightarrow0< m< \frac{1}{2}\)

1: \(\Leftrightarrow x\left(m+1-1\right)-2=0\)

=>mx-2=0

Để phương trình vô nghiệm thì m=0

2: \(\Leftrightarrow x\left(m^2+2m+1-4m-9\right)=m+2\)

\(\Leftrightarrow x\left(m^2-2m-8\right)=m+2\)

Để phương trình vô nghiệm thì m-4=0

hay m=4

3: \(\Leftrightarrow m^2x-m^2=4x-2m-8\)

\(\Leftrightarrow x\left(m^2-4\right)=m^2-2m-8=\left(m-4\right)\left(m+2\right)\)

để pt vô nghiệm thì m-2=0

hay m=2

9 tháng 12 2016

\(x^2-\left(m-2\right)x+m\left(m-3\right)=0\)

\(\Leftrightarrow x^2-\left(m-2\right)x+\left(m^2-3m\right)=0\) (*)

\(\Delta'=\left(m-2\right)^2-\left(m^2-3m\right)\)

\(=m^2-4m+4-m^2+3m\)

\(=4-m\). Để (*) có 2 nghiệm phân biệt suy ra \(\Delta'>0\)

\(\Rightarrow4-m>0\Rightarrow m< 4\)

Vậy với m=4 (*) có 2 nghiệm phân biệt

 

 

9 tháng 12 2016

Nhưng ở pt b=1 thì làm sao dùng được delta phẩy ạ