Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để PT có 2 nghiệm phân biệt thì
\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)>0\)
\(\Leftrightarrow m< 0\)
Theo vi et ta có:
\(\hept{\begin{cases}x_1+x_2=-2m+4\\x_1.x_2=m^2-2m+4\end{cases}}\)
Theo đề bài thì
\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)
\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-2x_1.x_2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)
\(\Leftrightarrow\frac{2}{\left(-2m+4\right)^2-2\left(m^2-2m+4\right)}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)
\(\Leftrightarrow\frac{1}{m^2-6m+4}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)
\(\Leftrightarrow15m^4-120m^3+296m^2-480m+240=0\)
Với m < 0 thì VP > 0
Vậy không tồn tại m để thỏa bài toán.
Pt \(x^3-\left(m+1\right)x^2-\left(2m^2-3m+2\right)x+2m\left(2m-1\right)=0\) (1)
Ta thấy ngay pt (1) có 1 nghiệm x = 2
Vậy nên ta có: \(x^3-\left(m+1\right)x^2-\left(2m^2-3m+2\right)x+2m\left(2m-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+\left(1-m\right)x+\left(-2m^2+m\right)\right)=0\)
Để pt (1) có đúng hai nghiệm phân biệt thì pt \(\Leftrightarrow x^2+\left(1-m\right)x+\left(-2m^2+m\right)=0\) có 1 nghiệm duy nhất khác 2
Tức là: \(\hept{\begin{cases}\Delta=0\\4+2\left(1-m\right)+\left(-2m^2+m\right)\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(3m-1\right)^2=0\\-2m^2-m+6\ne0\end{cases}}\Leftrightarrow m=\frac{1}{3}\)
Vậy \(m=\frac{1}{3}.\)
Thầy/cô ơi làm sao để tách ra được nhân tử chung (x-2) vậy ạ
toán mấy v chế nếu toán 7 thì em có thể ngoài ra thì ... bằng chéo