Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(2x^2-\left(3m+1\right)x+m^2+m=0\) (a)
\(\Leftrightarrow\) \(x=m:=x_1\) hoặc \(x=\frac{m+1}{2}:=x_2\)
Bởi vậy \(\begin{cases}2x^2-\left(3m+1\right)x+m^2+m=0\\x^2-mx-3m-1\ge0\end{cases}\) (1) có hai nghiệm phân biệt khi và chỉ khi hai nghiệm \(x_1\) , \(x_2\) đó
khác nhau và cùng thỏa mãn ( b) , hay là :
\(\begin{cases}\begin{cases}m\ne\frac{m+1}{2}\\m^2-m^2-3m-1\ge0\end{cases}\\\left(\frac{m+1}{2}\right)^2-m\frac{m+1}{2}-3m-1\ge0\\\end{cases}\)
\(\Leftrightarrow\) \(\begin{cases}m\ne1\\m\le-\frac{1}{3}\\m^2+12m+3\le0\end{cases}\)
\(\left(\Rightarrow m\ne1\right)\)
\(\Leftrightarrow\) \(\begin{cases}m\le-\frac{1}{3}\\-6-\sqrt{33}\le m\le-6+\sqrt{33}\end{cases}\)
\(\Leftrightarrow-6-\sqrt{33}\le m\le-\frac{1}{3}\)
Vậy \(-6-\sqrt{33}\le m\le-\frac{1}{3}\) là các giá trị cần tìm
Bài 2:
Để phương trình có hai nghiệm phân biệt thì 4-4(1-3m)>0
=>4(1-3m)<4
=>1-3m<1
=>3m>0
hay m>0
\(a=1>0\); \(-\frac{b}{2a}=m+\frac{1}{m}\ge2>1\)
\(\Rightarrow\) Hàm số đã cho nghịch biến trên \(\left[-1;1\right]\)
\(\Rightarrow y_1=\max\limits_{\left[-1;1\right]}f\left(x\right)=f\left(-1\right)=3m+\frac{2}{m}+1\)
\(y_2=f\left(1\right)=-m-\frac{2}{m}+1\)
\(\Rightarrow y_1-y_2=4m+\frac{4}{m}=8\)
\(\Leftrightarrow m^2-2m+1=0\Rightarrow m=1\)
hồn loàng
đặt \(l\left(x\right)=-x^2-2x+1+3m\) dễ thấy \(3m-7\le g\left(x\right)\le3m+1\) (đạo hàm hoặc tư duy)
Để \(y_{max}=7\) trên \(\left[0;2\right]\) thì :
TH1 : \(\hept{\begin{cases}3m+1=7\\3m-7>-7\end{cases}}\Leftrightarrow\hept{\begin{cases}m=2\\m>0\end{cases}}\Leftrightarrow m=2\)
\(\hept{\begin{cases}3m+1=-7\\3m-7< 7\end{cases}}\Leftrightarrow\hept{\begin{cases}m=\frac{-8}{3}\\m< \frac{14}{3}\end{cases}}\Leftrightarrow m=\frac{-8}{3}\)
...