K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2020

hồn loàng

8 tháng 12 2020

đặt \(l\left(x\right)=-x^2-2x+1+3m\) dễ thấy \(3m-7\le g\left(x\right)\le3m+1\) (đạo hàm hoặc tư duy) 

Để \(y_{max}=7\) trên \(\left[0;2\right]\) thì : 

TH1 : \(\hept{\begin{cases}3m+1=7\\3m-7>-7\end{cases}}\Leftrightarrow\hept{\begin{cases}m=2\\m>0\end{cases}}\Leftrightarrow m=2\)

\(\hept{\begin{cases}3m+1=-7\\3m-7< 7\end{cases}}\Leftrightarrow\hept{\begin{cases}m=\frac{-8}{3}\\m< \frac{14}{3}\end{cases}}\Leftrightarrow m=\frac{-8}{3}\)

... 

26 tháng 2 2016

Ta có \(2x^2-\left(3m+1\right)x+m^2+m=0\) (a) 

\(\Leftrightarrow\) \(x=m:=x_1\) hoặc \(x=\frac{m+1}{2}:=x_2\)

Bởi vậy \(\begin{cases}2x^2-\left(3m+1\right)x+m^2+m=0\\x^2-mx-3m-1\ge0\end{cases}\)  (1) có hai nghiệm phân biệt khi và chỉ khi hai nghiệm \(x_1\) , \(x_2\) đó

khác nhau và cùng thỏa mãn ( b) , hay là :

\(\begin{cases}\begin{cases}m\ne\frac{m+1}{2}\\m^2-m^2-3m-1\ge0\end{cases}\\\left(\frac{m+1}{2}\right)^2-m\frac{m+1}{2}-3m-1\ge0\\\end{cases}\)

\(\Leftrightarrow\) \(\begin{cases}m\ne1\\m\le-\frac{1}{3}\\m^2+12m+3\le0\end{cases}\)

\(\left(\Rightarrow m\ne1\right)\)

\(\Leftrightarrow\) \(\begin{cases}m\le-\frac{1}{3}\\-6-\sqrt{33}\le m\le-6+\sqrt{33}\end{cases}\)

\(\Leftrightarrow-6-\sqrt{33}\le m\le-\frac{1}{3}\)

Vậy  \(-6-\sqrt{33}\le m\le-\frac{1}{3}\) là các giá trị cần tìm

 

Bài 2: 

Để phương trình có hai nghiệm phân biệt thì 4-4(1-3m)>0

=>4(1-3m)<4

=>1-3m<1

=>3m>0

hay m>0

16 tháng 12 2019

hình như đk của ý a và b ngược nhau đây

NV
19 tháng 11 2019

\(a=1>0\); \(-\frac{b}{2a}=m+\frac{1}{m}\ge2>1\)

\(\Rightarrow\) Hàm số đã cho nghịch biến trên \(\left[-1;1\right]\)

\(\Rightarrow y_1=\max\limits_{\left[-1;1\right]}f\left(x\right)=f\left(-1\right)=3m+\frac{2}{m}+1\)

\(y_2=f\left(1\right)=-m-\frac{2}{m}+1\)

\(\Rightarrow y_1-y_2=4m+\frac{4}{m}=8\)

\(\Leftrightarrow m^2-2m+1=0\Rightarrow m=1\)