K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 7 2021

\(y'=-4x^3+2\left(2m-3\right)x\)

Hàm nghịch biến trên (1;3) khi với mọi \(x\in\left(1;3\right)\) ta có:

\(-4x^3+2\left(2m-3\right)x\le0\)

\(\Leftrightarrow2mx\le2x^3+3x\)

\(\Leftrightarrow m\le x^2+\dfrac{3}{2}\)

\(\Leftrightarrow m\le\min\limits_{\left(1;3\right)}\left(x^2+\dfrac{3}{2}\right)\Rightarrow m\le1+\dfrac{3}{2}=\dfrac{5}{2}\)

19 tháng 4 2016

Ta có : \(y'=4x^3-4\left(m-1\right)x\)

           \(y'=0\Leftrightarrow4x^3-4\left(m-1\right)x=0\Leftrightarrow x\left[x^2-\left(m-1\right)\right]=0\)

Trường hợp 1 : nếu \(m-1\le0\Leftrightarrow m\le1\), hàm số đồng biến trên khoảng \(\left(0;+\infty\right)\), vậy \(m\le1\) thỏa mãn yêu cầu bài toán

Trường hợp 2 : nếu \(m-1>0\Leftrightarrow m>1\)hàm số đồng biến trên khoảng \(\left(-\sqrt{m-1};0\right)\) và \(\left(\sqrt{m-1};+\infty\right)\)

Để hàm số đồng biến trên khoảng (1;3) thì \(\left(\sqrt{m-1}\le1\Leftrightarrow m\le2\right)\)

Vậy hàm số đồng biến trên khoảng (1;3) \(\Leftrightarrow m\in\left(-\infty;2\right)\)

 
 

 

29 tháng 9 2016

Theo mình:

để hàm số đồng biến, đk cần là y'=0.

a>0 và \(\Delta'< 0\)

nghịch biến thì a<0 

vì denta<0 thì hầm số cùng dấu với a

mình giải được câu a với b

câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb) 

câu d dùng viet

câu e mình chưa chắc lắm ^^

19 tháng 4 2016

Hàm số nghịch biến trên khoảng \(\left(1;+\infty\right)\)\(\Rightarrow y'\le0,x\in\left(1;+\infty\right)\) (*)

Trường hợp 1 : Nếu \(\Delta'\le0\Leftrightarrow4m^2-7m+1\le0\Leftrightarrow\frac{7-\sqrt{33}}{8}\le m\le\frac{7+\sqrt{33}}{8}\) thì theo định lí về dấu tam thức bậc 2 ta có \(y'\le0,x\in R\Rightarrow\) (*) luôn đúng.

Trường hợp 2 : Nếu \(\Delta'>0\Leftrightarrow4m^2-7m+1>0\Leftrightarrow m\le\frac{7-\sqrt{33}}{8}\)  hoặc \(m\ge\frac{7+\sqrt{33}}{8}\)thì (*) đúng

\(\Leftrightarrow\) phương trình y'=0 có 2 nghiệm phân biệt \(x_1,x_2\) mà \(x_1<\)\(x_2\) và thỏa mãn x1 < x2 <= 1

\(\Leftrightarrow\frac{1-\sqrt{5}}{2}\le m\le\frac{7-\sqrt{33}}{8}\) hoặc \(\frac{7-\sqrt{33}}{8}\le m\le\frac{1-\sqrt{5}}{2}\)

Kết hợp trường hợp 1 và trường hợp 2 ta có 

\(\Leftrightarrow\frac{1-\sqrt{5}}{2}\le m\le\frac{7-\sqrt{33}}{8}\) hoặc \(\frac{7-\sqrt{33}}{8}\le m\le\frac{1-\sqrt{5}}{2}\) thì hàm số nghịch biến trên khoảng \(\left(1;+\infty\right)\)

 
15 tháng 10 2015

ta tính \(y'=-3mx^2-6x+2-m\)

để hàm số nghịch biến trên R thì \(\)y'<0 với mọi x thuộc R  ta có 

y'<0 với mọi x thuộc R thì \(\begin{cases}-m<0\\\Delta=b^2-4ac=36+4.3.\left(2-m\right)m=-12m^2+24m+36<0\end{cases}\)

suy ra \(\begin{cases}m>0\\-12m^2+24m+36<0\end{cases}\)

giải hệ pt ta suy đc đk của m để hàm số nghịch biến 

14 tháng 12 2016

D.\(-2<0<= -1\)

19 tháng 12 2016

sao lại D, câu này mình và thầy giáo đang tranh cãi mà, thầy chọn A mình chọn B!

21 tháng 7 2017

\(-2< m\le1\)

AH
Akai Haruma
Giáo viên
25 tháng 1 2017

Lời giải:

Để hàm $y$ nghịch biến thì

\(y'=\frac{m^2-4}{(m+x)^2}<0\Leftrightarrow m^2-4<0\Leftrightarrow -2< m<2(1)\)

Mặt khác \(x\in(-\infty,1)\) nên để hàm số xác định, tức \(x+m\neq 0\Rightarrow m\neq (-1,+\infty)\), tức là \(m\leq -1(2) \)

Kết hợp \((1),(2)\Rightarrow -2 < m \leq -1\)