Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\limits_{x\rightarrow1}\frac{x^3-4x^2+3}{x^2-1}=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x^2-3x-3\right)}{\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\frac{x^2-3x-3}{x+1}=\frac{1-3-3}{2}=-\frac{5}{2}\)
Để hàm số liên tục tại x=1
\(\Leftrightarrow a+\frac{5}{2}=-\frac{5}{2}\Rightarrow a=-5\)
\(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+2}-\sqrt{3x-1}}{x-1}=+\infty\) (đây ko phải giới hạn dạng vô định \(\frac{0}{0}\))
\(\Rightarrow\) Không tồn tại m thỏa mãn
Có lẽ bạn ghi ko đúng đề, hàm bên trên phải là \(\frac{\sqrt{2x+2}-\sqrt{3x+1}}{x-1}\) thì giới hạn này mới là 1 số hữu hạn
Bạn viết lại đề được ko? Ko hiểu \(\frac{x'+x}{x}\) với \(x\ne0\) là gì
Các câu dưới cũng có kí hiệu này, chắc bạn viết nhầm sang kí hiệu nào đó, nó cũng ko phải kí hiệu đạo hàm
a.
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-ax+2021}-x+1\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{\left(\sqrt{x^2-ax+2021}-x\right)\left(\sqrt{x^2-ax+2021}+x\right)}{\sqrt{x^2-ax+2021}+x}+1\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{-ax+2021}{\sqrt{x^2-ax+2021}+x}+1\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{x\left(-a+\dfrac{2021}{x}\right)}{x\left(\sqrt{1-\dfrac{a}{x}+\dfrac{2021}{x^2}}+1\right)}+1\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{-a+\dfrac{2021}{x}}{\sqrt{1-\dfrac{a}{x}+\dfrac{2021}{x^2}}+1}+1\right)\)
\(=\dfrac{-a+0}{\sqrt{1+0+0}+1}+1=-\dfrac{a}{2}+1\)
\(\Rightarrow a^2=-\dfrac{a}{2}+1\Rightarrow2a^2+a-2=0\)
Pt trên có 2 nghiệm pb nên có 2 giá trị a thỏa mãn
b.
\(\lim\limits_{x\rightarrow-1}f\left(x\right)=\lim\limits_{x\rightarrow-1}\dfrac{x^3+1}{x+1}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{x+1}=\lim\limits_{x\rightarrow-1}\left(x^2-x+1\right)\)
\(=1+1+1=3\)
\(f\left(-1\right)=3a\)
Hàm gián đoạn tại điểm \(x_0=-1\) khi:
\(\lim\limits_{x\rightarrow-1}f\left(x\right)\ne f\left(-1\right)\Rightarrow3\ne3a\)
\(\Rightarrow a\ne1\)
a) TXĐ: R
+) Với x \(\ne\) 1, f(x) = \(\frac{2x^2-x-1}{x-1}\) liên tục trên mỗi khoảng ( -\(\infty\); 1) và ( 1; +\(\infty\))
+) Với x = 1
Ta có: f(1) = 3
và \(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\frac{2x^2-x-1}{x-1}=\lim\limits_{x\rightarrow1}\left(2x+1\right)=3\)
Vì f(1) = \(\lim\limits_{x\rightarrow1}f\left(x\right)\)
=> Hàm số f(x) liên tục tại điểm x = 1
Vậy f(x) liên tục trên R
b) TXĐ: R
+) Với x > 1
Có: f(x) = \(\frac{\sqrt{5x-1}-2}{x-1}\) liên tục trên ( 1; + \(\infty\))
+) Với x < 1
Có: f(x) = -6x + 5 liên tục trên ( - \(\infty\) ; 1 )
+) Với x = 1
f(1) = - 1
\(\lim\limits_{x\rightarrow1-}f\left(x\right)=\lim\limits_{x\rightarrow1-}\left(-6x+5\right)=-1\)
\(\lim\limits_{x\rightarrow1+}f\left(x\right)=\lim\limits_{x\rightarrow1+}\frac{\sqrt{5x-1}-2}{x-1}=\lim\limits_{x\rightarrow1+}\frac{5}{\sqrt{5x-1}+2}=\frac{5}{4}\)
Vì \(f\left(1\right)=\lim\limits_{x\rightarrow1-}f\left(x\right)\ne\lim\limits_{x\rightarrow1+}f\left(x\right)\)
=> f(x) gian đoạn tại x =1
Vậy: f(x) liên tục trên mỗi khoảng ( -\(\infty\); 1) và ( 1; +\(\infty\)) và gián đoạn tại x = 1
\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\left(m+\frac{1-x}{1+x}\right)=m+1\)
\(\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\frac{\left(\sqrt{1-x}-\sqrt{1+x}\right)\left(\sqrt{1-x}+\sqrt{1+x}\right)}{x\left(\sqrt{1-x}+\sqrt{1+x}\right)}=\lim\limits_{x\rightarrow0^-}\frac{-2x}{x\left(\sqrt{1-x}+\sqrt{1+x}\right)}\)
\(=\lim\limits_{x\rightarrow0^-}\frac{-2}{\sqrt{1-x}+\sqrt{1+x}}=-1\)
Để hàm số liên tục tại x=0
\(\Leftrightarrow\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=f\left(0\right)\)
\(\Leftrightarrow m+1=-1\Rightarrow m=-2\)
Bài 2:
Đặt \(f\left(x\right)=4x^4+2x^2-x-3\)
\(f\left(x\right)\) là hàm đa thức nên liên tục trên mọi khoảng thuộc R
\(f\left(-1\right)=4>0\) ; \(f\left(0\right)=-3< 0\)
\(\Rightarrow f\left(-1\right).f\left(0\right)< 0\Rightarrow f\left(x\right)\) có ít nhất 1 nghiệm trên \(\left(-1;0\right)\)
\(f\left(1\right)=2>0\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) có ít nhất 1 nghiệm trên \(\left(0;1\right)\)
Vậy \(f\left(x\right)\) có ít nhất 2 nghiệm trên \(\left(-1;1\right)\)
\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\frac{x^3-1}{2x-2}=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x^2+x+1\right)}{2\left(x-1\right)}=\lim\limits_{x\rightarrow1}\frac{x^2+x+1}{2}=\frac{3}{2}\)
Để hàm số gián đoạn tại \(x=1\)
\(\Leftrightarrow\lim\limits_{x\rightarrow1}f\left(x\right)\ne f\left(1\right)\)
\(\Leftrightarrow\frac{3}{2}\ne m+1\Rightarrow m\ne\frac{1}{2}\)
Để f(x) gián đoạn tại x = 1
thì \(\lim\limits_{x\rightarrow1}f\left(x\right)\ne f\left(1\right)\)
<=> \(\lim\limits_{x\rightarrow1}\frac{x^3-1}{x-1}\ne3m\)
<=> \(\lim\limits_{x\rightarrow1}\left(x^2+x+1\right)\ne3m\)
<=> \(3\ne3m\Leftrightarrow m\ne1\)
Vậy: ...