\(\left\{{}\begin{matrix}\frac{x^3-1}{x-1}.khix\ne1\\3m.khi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2020

Để f(x) gián đoạn tại x = 1

thì \(\lim\limits_{x\rightarrow1}f\left(x\right)\ne f\left(1\right)\)

<=> \(\lim\limits_{x\rightarrow1}\frac{x^3-1}{x-1}\ne3m\)

<=> \(\lim\limits_{x\rightarrow1}\left(x^2+x+1\right)\ne3m\)

<=> \(3\ne3m\Leftrightarrow m\ne1\)

Vậy: ...

NV
13 tháng 5 2020

\(\lim\limits_{x\rightarrow1}\frac{x^3-4x^2+3}{x^2-1}=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x^2-3x-3\right)}{\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\frac{x^2-3x-3}{x+1}=\frac{1-3-3}{2}=-\frac{5}{2}\)

Để hàm số liên tục tại x=1

\(\Leftrightarrow a+\frac{5}{2}=-\frac{5}{2}\Rightarrow a=-5\)

NV
22 tháng 2 2020

\(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+2}-\sqrt{3x-1}}{x-1}=+\infty\) (đây ko phải giới hạn dạng vô định \(\frac{0}{0}\))

\(\Rightarrow\) Không tồn tại m thỏa mãn

Có lẽ bạn ghi ko đúng đề, hàm bên trên phải là \(\frac{\sqrt{2x+2}-\sqrt{3x+1}}{x-1}\) thì giới hạn này mới là 1 số hữu hạn

22 tháng 2 2020

ừ đúng rồi là 3x+1 giúp mình câu này với

NV
10 tháng 4 2020

Bạn viết lại đề được ko? Ko hiểu \(\frac{x'+x}{x}\) với \(x\ne0\) là gì

Các câu dưới cũng có kí hiệu này, chắc bạn viết nhầm sang kí hiệu nào đó, nó cũng ko phải kí hiệu đạo hàm

a. Có bao nhiêu giá trị của a để \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-ax+2021}-x+1\right)=a^2\)b. Tìm a để hàm số f(x)=\(\left\{{}\begin{matrix}\dfrac{x^3+1}{x+1}khix\ne-1\\3akhix=-1\end{matrix}\right.\)gián đoạn tại điểm \(x_0=-1\)c. Cho tứ diện đều ABCD .Góc giữa 2 vecto DA và BD bằng?d. Cho hàm số y = f(x) = \(\dfrac{x^2-1}{2-2x}\)khi \(x\ne1\) .Để hàm số liên tục tại x=1 thì f(1) phải nhận giá trị nào dưới...
Đọc tiếp

a. Có bao nhiêu giá trị của a để \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-ax+2021}-x+1\right)=a^2\)

b. Tìm a để hàm số f(x)=\(\left\{{}\begin{matrix}\dfrac{x^3+1}{x+1}khix\ne-1\\3akhix=-1\end{matrix}\right.\)gián đoạn tại điểm \(x_0=-1\)

c. Cho tứ diện đều ABCD .Góc giữa 2 vecto DA và BD bằng?

d. Cho hàm số y = f(x) = \(\dfrac{x^2-1}{2-2x}\)khi \(x\ne1\) .Để hàm số liên tục tại x=1 thì f(1) phải nhận giá trị nào dưới đây? (giải tự luận giúp em ạ)

A.-1            B.1           C.2                           D.0

e. Cho hàm số \(f\left(x\right)=x^3+2x-1\) .Xét phương trình f(x) = 0 (1), trong các mệnh đề sau tìm mệnh đề sai? giải tự luận giúp em ạ

A. (1) có nghiệm rên khoảng (-1;1)

B. (1) Không có nghiệm trên khoảng (-5;3)

C. (1) có nghiệm trên R 

D. (1) có nghiệm trên khoảng (0;1)

 

 

3
NV
14 tháng 3 2022

a.

\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-ax+2021}-x+1\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{\left(\sqrt{x^2-ax+2021}-x\right)\left(\sqrt{x^2-ax+2021}+x\right)}{\sqrt{x^2-ax+2021}+x}+1\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{-ax+2021}{\sqrt{x^2-ax+2021}+x}+1\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{x\left(-a+\dfrac{2021}{x}\right)}{x\left(\sqrt{1-\dfrac{a}{x}+\dfrac{2021}{x^2}}+1\right)}+1\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{-a+\dfrac{2021}{x}}{\sqrt{1-\dfrac{a}{x}+\dfrac{2021}{x^2}}+1}+1\right)\)

\(=\dfrac{-a+0}{\sqrt{1+0+0}+1}+1=-\dfrac{a}{2}+1\)

\(\Rightarrow a^2=-\dfrac{a}{2}+1\Rightarrow2a^2+a-2=0\)

Pt trên có 2 nghiệm pb nên có 2 giá trị a thỏa mãn

NV
14 tháng 3 2022

b.

\(\lim\limits_{x\rightarrow-1}f\left(x\right)=\lim\limits_{x\rightarrow-1}\dfrac{x^3+1}{x+1}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{x+1}=\lim\limits_{x\rightarrow-1}\left(x^2-x+1\right)\)

\(=1+1+1=3\)

\(f\left(-1\right)=3a\)

Hàm gián đoạn tại điểm \(x_0=-1\) khi:

\(\lim\limits_{x\rightarrow-1}f\left(x\right)\ne f\left(-1\right)\Rightarrow3\ne3a\)

\(\Rightarrow a\ne1\)

11 tháng 4 2020

a) TXĐ: R

+) Với x \(\ne\) 1, f(x) = \(\frac{2x^2-x-1}{x-1}\) liên tục trên mỗi khoảng ( -\(\infty\); 1) và ( 1; +\(\infty\))

+) Với x = 1

Ta có: f(1) = 3

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\frac{2x^2-x-1}{x-1}=\lim\limits_{x\rightarrow1}\left(2x+1\right)=3\)

Vì f(1) = \(\lim\limits_{x\rightarrow1}f\left(x\right)\)

=> Hàm số f(x) liên tục tại điểm x = 1

Vậy f(x) liên tục trên R

b) TXĐ: R

+) Với x > 1

Có: f(x) = \(\frac{\sqrt{5x-1}-2}{x-1}\) liên tục trên ( 1; + \(\infty\))

+) Với x < 1

Có: f(x) = -6x + 5 liên tục trên ( - \(\infty\) ; 1 )

+) Với x = 1

f(1) = - 1

\(\lim\limits_{x\rightarrow1-}f\left(x\right)=\lim\limits_{x\rightarrow1-}\left(-6x+5\right)=-1\)

\(\lim\limits_{x\rightarrow1+}f\left(x\right)=\lim\limits_{x\rightarrow1+}\frac{\sqrt{5x-1}-2}{x-1}=\lim\limits_{x\rightarrow1+}\frac{5}{\sqrt{5x-1}+2}=\frac{5}{4}\)

\(f\left(1\right)=\lim\limits_{x\rightarrow1-}f\left(x\right)\ne\lim\limits_{x\rightarrow1+}f\left(x\right)\)

=> f(x) gian đoạn tại x =1

Vậy: f(x) liên tục trên mỗi khoảng ( -\(\infty\); 1) và ( 1; +\(\infty\)) và gián đoạn tại x = 1

NV
29 tháng 5 2020

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\left(m+\frac{1-x}{1+x}\right)=m+1\)

\(\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\frac{\left(\sqrt{1-x}-\sqrt{1+x}\right)\left(\sqrt{1-x}+\sqrt{1+x}\right)}{x\left(\sqrt{1-x}+\sqrt{1+x}\right)}=\lim\limits_{x\rightarrow0^-}\frac{-2x}{x\left(\sqrt{1-x}+\sqrt{1+x}\right)}\)

\(=\lim\limits_{x\rightarrow0^-}\frac{-2}{\sqrt{1-x}+\sqrt{1+x}}=-1\)

Để hàm số liên tục tại x=0

\(\Leftrightarrow\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=f\left(0\right)\)

\(\Leftrightarrow m+1=-1\Rightarrow m=-2\)

Bài 2:

Đặt \(f\left(x\right)=4x^4+2x^2-x-3\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên mọi khoảng thuộc R

\(f\left(-1\right)=4>0\) ; \(f\left(0\right)=-3< 0\)

\(\Rightarrow f\left(-1\right).f\left(0\right)< 0\Rightarrow f\left(x\right)\) có ít nhất 1 nghiệm trên \(\left(-1;0\right)\)

\(f\left(1\right)=2>0\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) có ít nhất 1 nghiệm trên \(\left(0;1\right)\)

Vậy \(f\left(x\right)\) có ít nhất 2 nghiệm trên \(\left(-1;1\right)\)

NV
11 tháng 5 2020

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\frac{x^3-1}{2x-2}=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x^2+x+1\right)}{2\left(x-1\right)}=\lim\limits_{x\rightarrow1}\frac{x^2+x+1}{2}=\frac{3}{2}\)

Để hàm số gián đoạn tại \(x=1\)

\(\Leftrightarrow\lim\limits_{x\rightarrow1}f\left(x\right)\ne f\left(1\right)\)

\(\Leftrightarrow\frac{3}{2}\ne m+1\Rightarrow m\ne\frac{1}{2}\)