\(x^3-3x^2+5x+2m\) chia hết cho g(x)=x+1

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2019

Áp dụng định lý Bezout:

\(f\left(x\right)=x^3-3x^2+5x+2m\)chia hết cho g (x) = x + 1 nên:

\(f\left(-1\right)=0\)

\(\Rightarrow-1-3-5+2m=0\Leftrightarrow2m=9\Leftrightarrow m=\frac{9}{2}\)

1 tháng 12 2019

 Mình chưa học dịnh lí Bezout

16 tháng 8 2017

a) gọi Q(x) là thương khi chia f(x) cho g(x)

khi đó ta có dạng: f(x)=g(x).Q(x)=> f(x)=(x+3)(Q(x)   (1)

Vì (1) luôn đúng vs mọi x nên thay x=-3 vào (1) ta đc:

f(-3)= \(\left(-3\right)^3+3.\left(-3\right)^2+5.\left(-3\right)+a=0\) 0

    <=> \(-15+a=0\)

<=>a=15

Vậy vs a=15 thì f(x) chia hết cho g(x)

26 tháng 11 2019

Bài 1 : 

Gọi f( x )  = 2n2 + n - 7

       g( x ) = n - 2

Cho g( x )  = 0

\(\Leftrightarrow\)n - 2 = 0

\(\Rightarrow\)n      = 2

\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7

\(\Rightarrow\)f( 2 )  = 3

Để f( x ) \(⋮\)g( x )

\(\Rightarrow\)n - 2 \(\in\)Ư( 3 )  = { \(\pm\)1 ; \(\pm\)3 }

Ta lập bảng :

n - 21- 13- 3
n315- 1

Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }

26 tháng 11 2019

2n^2+n-7 n-2 2n+6 2n^2-4n 6n-7 6n-12 5

Để \(2n^2+n-7⋮n-2\) thì \(5⋮n-2\)

Làm nốt

28 tháng 10 2020

Bài 2:

Ta có: \(2n^2+n-7⋮n-2\)

\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)

\(\Leftrightarrow2n\left(n-2\right)+5\left(n-2\right)+3⋮n-2\)

\(\Leftrightarrow\left(n-2\right)\left(2n+5\right)+3⋮n-2\)

\(\left(n-2\right)\left(2n+5\right)⋮n-2\)

nên \(3⋮n-2\)

\(\Leftrightarrow n-2\inƯ\left(3\right)\)

\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{3;1;5;-1\right\}\)

Vậy: Để \(2n^2+n-7⋮n-2\) thì \(n\in\left\{3;1;5;-1\right\}\)

2 tháng 11 2018

Chia bình thường thôi mà

2 tháng 11 2018

chia hộ cái

20 tháng 3 2017

hình như đề có vấn đề x^2-5x+2 ko phân tích thành nhân tử đc

20 tháng 3 2017

a+b=-52 thưa bạn a=-14,b=-38