Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai, do pt \(x^2+3x+4=0\) vô nghiệm nên đồ thị hàm số không có TCĐ nào với mọi m
Lời giải:
Câu 1:
Lưu ý tiệm cận đứng là \(x=\frac{3}{2}\) chứ không phải \(y=\frac{3}{2}\)
Ta có \(y=\sqrt{4x^2+mx+1}-(2x-1)=\frac{4x^2+mx+1-(2x-1)^2}{\sqrt{4x^2+mx+1}+2x-1}\)
\(\Leftrightarrow y=\frac{x(m+4)}{\sqrt{4x^2+mx+1}+2x-1}\)
Để ĐTHS có tiệm cận đứng \(x=\frac{3}{2}\) thì pt \(\sqrt{4x^2+mx+1}+2x-1=0\) phải có nghiệm là \(x=\frac{3}{2}\)
\(\Leftrightarrow \sqrt{10+\frac{3m}{2}}+2=0\) (vô lý vì vế trái luôn lớn hơn 0)
Do đó không tồn tại m thỏa mãn.
Câu 2:
Để đths có đúng một tiệm cận đứng thì có thể xảy 2 TH sau:
TH1: PT \(x^2-3x-m=0\) có nghiệm kép
\(\Leftrightarrow \Delta=9+4m=0\Leftrightarrow m=-\frac{9}{4}\)
\(y=\frac{x-1}{x^2-3x+\frac{9}{4}}=\frac{x-1}{(x-\frac{3}{2})^2}\) có TCĐ là \(x=\frac{3}{2}\) (thỏa mãn)
TH2: PT \(x^2-3x-m=0\) có hai nghiệm phân biệt trong đó có một nghiệm \(x=1\)
\(\Leftrightarrow 1^2-3.1-m=0\Leftrightarrow m=-2\)
Khi đó, \(y=\frac{x-1}{x^2-3x+2}=\frac{x-1}{(x-2)(x-1)}=\frac{1}{x-2}\) có TCĐ \(x=2\) (thỏa mãn)
Vậy tổng giá trị của $m$ thỏa mãn là:
\(\sum =\frac{-9}{4}+(-2)=\frac{-17}{4}\)
Hàm không có tiệm cận đứng khi: \(x^2-\left(2m+3\right)x+2\left(m-1\right)=0\) có nghiệm \(x=2\)
\(\Rightarrow4-2\left(2m+3\right)+2\left(m-1\right)=0\)
\(\Rightarrow m=-2\)
Xét \(M\left(m;1+\frac{5}{m-3}\right)\) thuộc đồ thị đã cho
Theo yêu cầu bài tài <=> \(\left|m-3\right|=\left|\frac{5}{m-3}\right|\Leftrightarrow m=3\pm\sqrt{5}\)
Vậy \(M\left(3\pm\sqrt{5};1\pm\sqrt{5}\right)\)
Có\(x\rightarrow\mp\infty\) lim \(\dfrac{3x-2}{2x-3}=\dfrac{3}{2}\Rightarrow y=\dfrac{3}{2}\) là đường tiệm cận ngang của đồ thị hàm số
\(x\rightarrow\dfrac{3^-}{2}\)lim \(\dfrac{3x-2}{2x-3}=+\infty\Rightarrow x=\dfrac{3}{2}\) là tiệm cận đứng của đồ thị hàm số
Lời giải:
Ta có: \(\lim_{x\mapsto +\infty}\frac{3x-2}{2x-3}=\frac{3}{2}=\lim_{x\mapsto +\infty}\frac{3-\frac{2}{x}}{2-\frac{3}{x}}=\frac{3}{2}\)
\(\Rightarrow y=\frac{3}{2}\)là tiệm cận ngang
Có: \(\lim _{x\mapsto \frac{3}{2}^+}y=\lim_{x\mapsto \frac{3}{2}^+}\frac{3x-2}{2x-3}=+\infty\) nên \(x=\frac{3}{2}\) là tiệm cận đứng
bài cơ bản mà !
mẫu =0 có 2 nghiệm
x=2, x=-1 là 2 đường tc đứng
bật tử bé hơn bật mẫu => có tiệm cận ngang y=0
sorry bạn nhé. bạn nhẩm nghiệm sai rồi :)
nghiệm là \(\dfrac{3\pm\sqrt{17}}{2}\) bạn nhé. và nếu như mẫu có nghiệm là x= -1 thì bạn sẽ phải ;oại nghiệm này vì nó cũng là nghiệm của tử = 0 thì lim của nó sẽ k tiến đến vô cùng bạn nhé nên x=-1 k phải là tiệm cận đứng
b) Tiệm cận đứng là đường thẳng \(x=3\)
Tiệm cận ngang là đường thẳng \(y=1\)
\(x-m=0\Rightarrow x=m\)
Để ĐTHS không có TCĐ
\(\Rightarrow2x^2-3x+m=0\) có nghiệm \(x=m\)
\(\Rightarrow2m^2-3m+m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)