Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-x^2+x-4=-\left(x-\frac{1}{2}\right)^2-\frac{15}{4}< 0;\forall x\) nên BPT tương đương:
\(-2x^2-2\left(m+3\right)x+m\le-x^2+x-4\)
\(\Leftrightarrow x^2+\left(2m+7\right)x-m-4\ge0\)
Để BPT có tập nghiệm R
\(\Leftrightarrow\Delta\le0\)
\(\Leftrightarrow\left(2m+7\right)^2+4\left(m+4\right)\le0\)
\(\Leftrightarrow4m^2+32m+65\le0\)
\(\Leftrightarrow4\left(m+4\right)^2+1\le0\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
a, tự làm
b, để bpt có nghiệm đúng với mọi x thuộc R <=> \(^{\Delta}\) \(\le\) 0
a/ \(2x^3+x+3>0\Leftrightarrow\left(x+1\right)\left(x^2-2x+3\right)>0\Leftrightarrow x+1>0\) \(\left(x^2-2x+3>0\forall x\in R\right)\)
\(\Leftrightarrow x>-1\)
Nghiệm của $VT(*)$ là $S=(-1;+\infty)$
b/ \(x^2\left(x^2+3x-4\right)\ge0\) $(*)$
$VT(*) có nghiệm kép là $0$ và nghiệm đơn là $1;-4$. Ta có BXD:
- + -4 0 1 + - - + 0 0 0 x VT(*)
Từ BXD suy ra bất phương trình có tập nghiệm $S={0} \cup (-\infty;-4] \cup [1;+\infty)$
Ta có: \(VT_{bpt}=m^2\left(x^4-1\right)+m\left(x^2-1\right)-6\left(x-1\right)\)(*)
\(=\left(x-1\right)\left[m^2\left(x+1\right)\left(x^2+1\right)+m\left(x+1\right)-6\right]\)
Ta xét \(f\left(x\right)=m^2\left(x+1\right)\left(x^2+1\right)+m\left(x+1\right)-6\)
+) m=0, rõ ràng không thỏa mãn
+) \(m\ne0\), thì f(x) là hàm số bậc 3, luôn có ít nhất 1 nghiệm, và luôn có lẻ số nghiệm(nghĩa là chỉ có 1 hoặc 3 nghiệm). Gọi nghiệm đó là \(x_o\) thì
\(f\left(x\right)=\left(x-x_o\right)\left(m^2x^2+bx+c\right)\)
Th1: \(ax^2+bx+c=\left(x-x_1\right)\left(x-x_2\right)\). Lúc này dấu của (*) đổi dấu trên từng khoảng, nên Th này loại.
Th2:\(ax^2+bx+c>0\forall x\) thì ta sẽ xét dấu của \(\left(x-1\right)\left(x-x_o\right)\). Biện luận tương tự Th1, để Bpt đúng với mọi x thì \(x_o=1\). Do đó f(x) phải nhận \(x_o\) làm nghiệm. Thay x=1 vào f(x):
\(m^2.4+2m-6=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-\dfrac{3}{2}\end{matrix}\right.\)
Thử lại thấy cả 2 giá trị của m đều thỏa mãn. Vậy \(S=-\dfrac{3}{2}+1=-\dfrac{1}{2}\)
Bpt \(\Leftrightarrow\left(x-1\right)^2+\left|x-1\right|+m-1\ge0;\forall x\)
Đặt \(t=\left|x-1\right|;t\ge0\)
Bpttt: \(t^2+t+m-1\)\(\ge0\) (1)
Để bpt có tập nghiệm là R khi (1) có nghiệm với mọi \(t\ge0\)
Đặt \(f\left(t\right)=t^2+t-1+m;t\ge0\) có đỉnh \(I\left(-\dfrac{1}{2};f\left(-\dfrac{1}{2}\right)\right)\)
\(\Rightarrow\) Hàm \(f\left(t\right)\) đồng biến trên \([0;+\infty)\)
Để \(f\left(t\right)\ge0;\forall t\ge0\)\(\Leftrightarrow\min\limits f\left(t\right)\ge0\)\(\Leftrightarrow f\left(0\right)\ge0\)\(\Leftrightarrow-1+m\ge0\Leftrightarrow m\ge1\)
Vậy...
😘